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Abstract—One big challenge of direction of arrival (DOA)
estimation is reverberation, since the spatial cues of the source
and its reflections cannot be well distinguished. In this paper
we propose a DOA compensation factor based on the mean
squared error (MSE) of system identification (SI), and used it
to adjust the DOA cost function values of conventional methods,
such that the robustness of DOA estimation to reverberation
can be improved. By analysing the relationship between the
beamforming outputs towards different DOAs and the signal
captured by the microphone, we show that the observed signal
can be more accurately predicted by the signal from beamforming
towards the direct-path, than from other directions. This is
indicated by a small MSE of SI, and is exploited to calculate
a DOA compensation factor. The proposed compensation factor
can be easily applied to conventional DOA estimation methods,
regardless of the number of microphones and the type of algo-
rithms. Experiments show that the proposed method outperforms
baseline methods in various reverberant conditions.

Index Terms—direction of arrival, reverberation, beamform-
ing, system identification, compensation factor

I. INTRODUCTION

Direction of arrival (DOA) estimation using a microphone
array has wide applications in systems such as surveillance [1],
hands-free devices [2], and automatic speech recognition (AS-
R) [3]. Such information is prerequisite for speech processing
algorithms including beamforming based speech enhancement
[4]–[6], dereverberation [7]–[9] and acoustic mapping [10],
[11].

Over the past decades, generalized cross correlation (GCC)
[12]–[15], steered beamformer response power (SRP) [16]–
[21] and multiple signal classification (MUSIC) [22]–[28]
based algorithms, are the most popular for DOA estimation,
which generally find the DOA which has the best cost function
in the spatial spectrum. A problem of these conventional
methods is that they rely on the ideal anechoic assumption that
only consider the direct path, which makes the performance
degrade in reverberation when the signals from DOAs other
than the target direction also present.

Many approaches are proposed to cope with the reverber-
ation problem. In [29]–[31], time-frequency (TF) bins dom-
inated by the direct-path signal are identified and used to
compute the DOA cost function. More accurate signal models
are also used, for example, in [32]–[36]. Specifically, [32], [33]
proposed an expectation maximization (EM) based method
which decompose the observed signal into the anechoic and

reverberation parts; [34], [35] identified the multichannel room
impulse responses (RIRs) for DOA estimation; [36] estimates
a direct-path signal cross-correlation (DPCC) using the convo-
lutive transfer function approximation. Although more realistic
signal models are adopted, these methods usually use energy
based criterion to design the cost function or optimization
problem, and could suffer from performance degradation when
closing to the strong reflector, in which case the energy of
reflection is comparable to the direct-path signal.

In this paper to overcome the above problem, we addi-
tionally exploit the causality between the beamformed signal
and the signal captured by the microphone array for single
source DOA estimation in reverberation. The single-channel
beamformed signals towards different hypothesized DOAs
are dominated by either the direct-path signal or reflection.
We show that when conducting system identification (SI) to
estimate the transfer function between the beamformed signal
and the microphone observation, the observed reverberant
signal can be more accurately predicted when the beamformed
signal is dominated by the direct-path signal component. Thus,
the SI problem is causal when DOA used beamforming orients
towards the target source, and yields a small mean squared
error (MSE), which is actually the loss function of SI. A new
compensation factor is thus proposed based on the MSE of
SI, and is used to improve the robustness of DOA estimation.

II. SIGNAL MODEL

We consider a reverberant environment with an M -element
microphone array and a single target source. Assuming that the
analysis window is larger than the RIR length, in the short-
time Fourier transform (STFT) domain, the m-th microphone
signal Ym(t, f) in the time frame t and frequency bin f is
expressed as [7]:

Ym(t, f) =Am,d(f)S(t, f) +Am,r(f)S(t, f) + Vm(t, f)

=Xm,d(t, f) +Xm,r(t, f) + Vm(t, f), (1)

where we decompose the STFT-domain RIR into the direct-
path component Am,d(f) and late component Am,r(f).
Xm,d(t, f) and Xm,r(t, f) are direct-path signal and rever-
beration, respectively. Vm(t, f) denotes the additive noise at
the m-th microphone, which is assumed to be uncorrelated
with the source signal S(t, f).
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III. PROPOSED METHOD

In this section, we propose a compensation factor for
different DOAs based on the MSE of SI, which takes the
beamformed signals from different DOAs as inputs, and
predicts the microphone observation. Based on the causality
analysis of SI, we show that the reverberant observation can
be more accurately predicted by the direct-path signal than
reverberation, which results in a smaller MSE value. Further,
the factor is derived based on the MSE, and is used to adjust
the DOA cost function of conventional methods.

Talker

UCA

Direct-path

Fig. 1. Schematic illustration of uniform circular array (UCA) based beam-
forming towards different hypothesized DOAs.

A. Beamforming

As shown in Fig. 1, the reverberant signal can be viewed
as the combination of the direct-path signal and source sig-
nal replicas coming from different mirror locations in the
room [7]. To differentiate these signals for further analysis,
the beamforming towards each hypothesized DOA is firstly
performed to yield a single-channel enhanced signal, in which
either the direct-path signal or the reverberation is dominated.

To compromise between the beam directivity and compu-
tational complexity, a fixed regularized superdirective beam-
former [37] is adopted. The beamformed signal Z(t, f, θ)
towards a hypothesized DOA θ is calculated as:

Z(t, f, θ) =WH(f, θ)Y(t, f), (2)

where W(f, θ) denotes the beamformer, which uses the ane-
choic steering vector and its expression is omitted here for
simplicity. Y(t, f) = [Y1(t, f), Y2(t, f), ..., YM (t, f)]T is the
multichannel signal vector.

Now we temporarily ignore the noise term in (1) and will
discuss it later, then (2) is further decomposed as:

Z(t, f, θ) = WH(f, θ)[Xd(t, f) + Xr(t, f)]

= X̂1,d(t, f, θ) + X̂1,r(t, f, θ), (3)

where Xd(t, f) = [X1,d(t, f), X2,d(t, f), ..., XM,d(t, f)]T ,
and X̂1,d(t, f, θ) = WH(f, θ)Xd(t, f) is the direct-path sig-
nal estimation of the first channel. Xr(t, f) and X̂1,r(t, f, θ)
are defined similarly to Xd(t, f) and X̂1,d(t, f, θ), and denote

reverberation signal components. Due to the optimization
goal of the beamformer, generally we can expect that the
X̂1,d(t, f, θ) reaches the highest dominance in Z(t, f, θ) when
θ is the DOA of the source.

B. DOA Compensation Factor

1) Causal system identification: Now we identify the trans-
fer function H(t, f, θ) between the beamformed signal and the
reverberant signal. The optimization problem can be defined
based on SI which minimizes the MSE as follows:

H(t, f, θ) = arg min
H(t,f,θ)

E{|e(t, f, θ)|2}, (4)

where e(t, f, θ) ∆
= Y1(t, f)−H∗(t, f, θ)Z(t, f, θ) denotes the

error signal of the SI problem and [ ]∗ is the conjugation. We
note that H(t, f, θ) is different with the steering vector used
for beamforming in (2).

According to (1) and (3), since the noise term has been
temporarily ignored here, we have:

e(t, f, θ) =X1,d(t, f)+X1,r(t, f)−
H∗(t, f, θ)[X̂1,d(t, f, θ)+X̂1,r(t, f, θ)]

=G(f)X1,d(t, f)−H∗(t, f, θ)X̂1,d(t, f, θ)−
H∗(t, f, θ)X̂1,r(t, f, θ), (5)

where G(f)=1 +A1,r(f)/A1,d(f). We note that theoretically
the reverberant component X1,r(t, f) in the observed signal
can be causally and linearly predicted by the direct-path signal
X1,d(t, f), since the direct-path signal comes earlier than the
reverberation, and the transfer function is the time-delayed and
attenuated version of the RIR.

Substitute (5) into (4), the MSE is given by:

E
{
|e(t, f, θ)|2

}
= E

{∣∣∣G(f)X1,d(t, f)−H∗(t, f, θ)X̂1,d(t, f, θ)
∣∣∣2}+

E

{∣∣∣H∗(t, f, θ)X̂1,r(t, f, θ)
∣∣∣2}+ ε(t, f), (6)

where ε(t, f) is the cross-correlation related term. In such
case we hope to use the direct-path signal component in the
signal obtained by multichannel beamforming, to predict the
reverberant observation in the first channel. When the iden-
tified transfer function converges to the optimal solution, we

have E
{∣∣∣G(f)X1,d(t, f)−H∗(t, f, θ)X̂1,d(t, f, θ)

∣∣∣2} → 0.

Hence, MSE is biased by E

{∣∣∣H∗(t, f, θ)X̂1,r(t, f, θ)
∣∣∣2},

which means strong reflection-path components X̂r(t, f, θ)
will result in large MSE bias.

By using the beamformer which utilizes the anechoic s-
teering vector, we aim to estimate the direct-path signal in
the reference channel. Thus if the beamformer steers towards
the source, we obtain the highest dominance of the direct-
path components X̂d(t, f, θ), whereas minimum reflection-
path components X̂r(t, f, θ) in Z(t, f, θ), such that the MSE
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is the smallest and the identified system H(t, f, θ) is causal.
In other words, compared with the reflection, the observed
signal can be better predicted by the direct-path signal, which
results in a smaller MSE, thus the MSE can be regarded as an
indicator of the causality of H(t, f, θ), showing whether the
beamformed signal is from the direct path.

The optimization problem is solved by the frequency-
domain normalized least mean square algorithm [38], and
H(t, f, θ) is updated iteratively as:

H(t+ 1, f, θ) = H(t, f, θ) + γ
e∗(t, f, θ)Z(t, f, θ)

σz(t, f, θ)
, (7)

with γ being the step size,

σz(t, f, θ) = ρσz(t− 1, f, θ) + (1− ρ)|Z(t, f, θ)|2, (8)

and ρ ∈ (0, 1] being a constant smoothing factor.
In practice, to improve the robustness to noise, the update

is active only when the speech presence probability (SPP)
exceeds a threshold β, and the SPP is estimated by [39].

In Fig. 2, we show an example of the MSEs using the
beamformed signal towards the direct path and a reflection
path, respectively. The observed signal can be more accurately
predicted by the beamformed signal from the source than
reflection, which results in a smaller MSE.

Fig. 2. The frequency-domain presentation of observed signal, signal pre-
dicted using the beamformed signal from the source (a) and reflection (c). (b)
and (d) represent corresponding squared error of (a) and (c), respectively.

2) Hypothesized DOA based compensation factor: Based
on the above analysis, we propose a DOA compensation factor
Q(t, θ) as:

Q(t, θ) =

∣∣∣∣∣∣
min
θ∈Ωθ

[ξ(t, θ)]

ξ(t, θ)

∣∣∣∣∣∣
2

, (9)

where Ωθ is the set of all hypothesized DOAs. ξ(t, θ) =∑
f∈Nb

|e(t, f, θ)|2 denotes the broadband MSE summed over all

frequencies, and Nb is the set of all frequency bins. The Q(t, θ)
calculated in (9) is normalized to the range of (0, 1], and the
larger the value, the greater the probability that corresponding
direction is the direct path. To reduce the fluctuation of MSE,
the ξ(t, θ) is updated by recursive smoothing, as:

ξ̃(t, θ)=αξ̃(t−1, θ)+(1−α)ξ(t, θ), (10)

where α ∈ (0, 1] is a smoothing factor, and ξ̃(t, θ) presents
the smoothed broadband MSE, which is uesd in (9).

It should be noted that, although the causality can help
to indicate the correctness of direct-path DOA hypothesis, it
mainly focuses on discriminating the direct path and reflection,
and is not considering to improve the spatial discrimination
for adjacent DOAs, which is commonly done by conventional
DOA methods. Therefore, in this paper, (9) is only used as a
compensation factor for an existing DOA cost function, instead
of as an independent new DOA cost function.

C. DOA Estimation

The estimated compensation factor can be directly used by
the various DOA estimation methods, by:

θ(t) = arg max
θ

[Q(t, θ)J(t, θ)], (11)

where J(t, θ) denotes the cost function of the conventional
method, and θ(t) is the estimated DOA in frame t. By
weighting the compensation factor to DOA cost function, the
peak value corresponding to the direct sound is highlighted,
whereas the peak value is weakened when the enhanced signal
is from reflection.

One concern of the proposed method might be the compu-
tational complexity since besides computing the DOA cost
function of conventional methods, additional beamforming
and SI are performed for each DOA. In fact, as the fixed
beamformer W(f, θ) is used whose coefficients are computed
offline, and the SI is recursively updated, for each DOA, the
proposed compensation factor only involves the computation
of a) obtain Z(t, f, θ) from (2), b) update H(t, f, θ) from (7),
and c) compute the broadband MSE and the compensation
factor from (9).

Fig. 3 shows an example of the calculated compensation
factor and pseudo spectrum of conventional DOA estimation
methods when closing to a strong reflector. It can be observed
that under the reverberant condition, the calculated compen-
sation factor can help DOA estimation methods overcome the
effect of the reverberation.

IV. EXPERIMENT

In this section, the well-known (SRP-PHAT) [40] and
broadband MUSIC [22] methods are used for comparison.

A. Experimental setup and evaluation

We simultaneously record the real data using three identical
six-element uniform circular microphone arrays (UCAs) with
a radius of 4.25 cm in a 9×6×3 m3 meeting room. The target
speaker is seated at (3, 3, 1.2) m, and the microphone arrays
are located at (4, 3, 1.2) m, (5, 3, 1.2) m and (6, 3, 1.2) m,
which means the target source is 1 m, 2 m and 3 m away
from the array center, respectively. The reverberation time
of the room is approximately 450 ms. For different source-
array distances, the direct-to-reverberant ratios (DRRs) [7] are
different, which changes the difficulty of DOA estimation. We
also evaluate the performance as a function of microphone
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Fig. 3. The pseudo spectrum of SRP-PHAT and compensated SRP-PHAT (a),
the pseudo spectrum MUSIC and compensated MUSIC (b), corresponding
compensation factor (c). Direct-path DOA angle is 0 marked with vertical
solid line. Reflection-path DOA angle is 180 marked with vertical dotted
line. Reverberant environment: T60 is 600ms + 20dB SNR white Gaussian
noise + uniform circular array (UCA) closet to a strong reflector.

number (six-microphone and dual-microphone) since the pro-
posed method relies on beamforming. In the dual-microphone
case, two microphones closet to the target source are used.

We asked twenty speakers to read randomly selected texts
for signal recording under 16 kHz sampling rate, which results
in about 35 minutes data for testing. The STFT analysis
window is 2048 samples Hamming window with 75% overlap.
Due to the diffused background noise, the signal-to-noise
ratios (SNRs) were around 24 dB, 22 dB, 20.5 dB, corre-
sponding to 1 m, 2 m and 3 m source-array distances.

In experiments for the proposed method we choose: γ =
0.02, ρ = 0.95, α = 0.98, β = 0.3, σz(1, f, θ) = |Z(1, f, θ)|2,
H(1, f, θ) is initialized as zero. We choose these parameters
according to a) γ is the step size for which a small value
is chosen, b) ρ and α are the smoothing factors commonly
used for speech signal processing, and is normally chosen as
larger than 0.9, c) β is the SPP threshold normally chosen
within [0.3, 0.65]. Two frame-level metrics, Accuracy and
Root Mean Square Error (RMSE), are used. We consider the
estimation as correct if the absolute error is less than a certain
threshold, which is set as 10◦ here. Non-speech frames are
identified by an energy-based voice detector and are excluded
for evaluation.

B. Experimental results

The results for different source-array distances using UCA
and dual-microphone array are depicted in Fig. 4 and Fig.
5, respectively. We can see that the proposed compensation
improves conventional DOA estimation for all cases tested.

In Fig. 4, it is shown that for 1 m source-array distance,
the proposed method can help SRP-PHAT to get the lowest
RMSE and 95.87% accuracy. When increasing the source-
array distance, all DOA estimation methods degrade in perfor-
mance as a result of the decreased DRR and SNR. However,
when the source-array distance is 3 m, the proposed method
can still improve the accuracies of both baseline methods by

nearly 20%, and the RMSE is reduced by 10◦ and 20◦ for
SRP-PHAT and MUSIC, respectively. Similar results can be
observed in the dual-microphone array case, as shown in Fig.
5. We see that in this case we get worse performance compared
with UCA, due to the fact the available spatial information
is limited. However, the proposed method can always help
DOA estimation methods attain a more accurate estimation in
different reverberant conditions.

Fig. 4. Frame-level RMSE (a) and Accuracy (b) of different algorithms using
uniform circular array (UCA) for different source-array distances.

Fig. 5. Frame-level RMSE (a) and Accuracy (b) of different algorithms using
dual-microphone array for different source-array distances.

V. CONCLUSIONS

In this paper, we propose to use causal SI based compen-
sation factor to perform reverberation-robust DOA estimation.
The proposed algorithm can be easily applied to various DOA
estimation methods, regardless of the number of microphones
and the type of algorithms. The beamforming is performed
on the multichannel observed signals to obtain direct-path
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signal or reflection-path signal. Then by exploiting causality
of SI between the enhanced signal and the observed signal,
a compensation factor expressed as a function of hypoth-
esized DOA is formulated. Furthermore, the compensation
factor assists DOA estimation by weighting the DOA cost
function. Experimental results on multichannel recordings in
real reverberant environments demonstrate that the proposed
algorithm can help different DOA estimation methods achieve
lower RMSE and higher estimation accuracy.
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