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ABSTRACT
Although the high order statistics (HOS) has promising prop-

erty against the Gaussian noise, there still lack effective ways

to apply the HOS to DOA estimation of the speech source.

In this paper, we propose a novel HOS based DOA estima-

tion method for speech source in strong noise conditions. A

“weighted spatial bispectrum correlation matrix (WSBCM)”

is formulated, which contains the spatial correlation informa-

tion of bispectrum phase differences. We then propose a new

DOA estimator based on the eigenvalue analysis of the WS-

BCM. Besides the theoretical advantage of the bispectrum a-

gainst Gaussian noises, the redundant information in the bis-

pectrum domain is also exploited to make the WSBCM noise

robust. The WSBCM enables bispectrum weighting to selec-

t the speech units in the bispectrum, which further helps to

improve the performance. Experimental results demonstrate

that the proposed method outperforms existing algorithms in

different kinds of noisy environments.

Index Terms— direction of arrival estimation, micro-

phone array signal processing, bispectrum

1. INTRODUCTION

Direction of arrival (DOA) estimation, which aims at deter-

mining the direction of sound sources using the microphone

array, has drawn much attention due to its wide application-

s such as in interactive robots, video conferences, and hand

free devices. In practical scenarios, one critical issue is to

make the DOA estimator robust when the strong noise exists

in the environment.

Conventional DOA estimation methods can be generally

classified into three categories: high-resolution spectral es-

timation [1, 2, 3], steered beamformer response power [4,

5], and time difference of arrival (TDOA) estimation [6, 7].

The classical methods can perform well in moderate spatially

white Gaussian noises, however, when the noise level is high,

they always suffer from severe performance degradation.

As the high order cumulant or spectrum of the Gaussian

signal is always zero, some HOS based methods have been
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proposed to improve the performance against Gaussian noise

[8, 9, 10, 11, 12]. However, almost all these algorithms are

proposed for narrowband signals, in order to apply them for

the broadband speech signal, it is much time-consuming if

we decompose the speech signal into narrowband signals and

estimate the DOAs separately in each narrowband. Moreover,

the estimation accuracy of HOS drops significantly when the

data length become short [13, 14], this negative effect further

limits the application of HOS based methods on speech as the

speech signal is only short-time stationary.

In order to better apply the HOS to the DOA estimation

of speech source, we propose a novel method in this paper.

A “WSBCM” is formulated, which contains the spatial corre-

lation information of the phase differences in the bispectrum

domain. The WSBCM is a function of a hypothesized DOA,

and shows interesting property only when the hypothesized

DOA equals to the true one. It avoids the separate narrow-

band estimation procedures, and exploits the redundant infor-

mation in the bispetrum domain to reduce the effect of noise

and bispectrum estimation error. In addition, the WSBCM en-

ables bispectrum weighting to further improve the robustness

to noise. We finally propose a new DOA estimator based on

the eigenvalue analysis of the WSBCM. Experimental results

demonstrate that the proposed method outperforms existing

algorithms in different noisy environments.

2. PROBLEM FORMULATION

We consider the problem in an environment with an M-

element uniform linear microphone array (ULA), a speech

source and several Gaussian noise sources. All sound sources

are in the far field [15] and uncorrelated with each other.

Assuming the signals are equally attenuated from the

speech source to each microphone, the signal received by the

mth microphone at time k can be simply expressed as:

ym(k) = s(k − τm) + vCm(k),m = 1, 2, ...,M, (1)

where s(k) is the speech signal, τm is the propagation time

from the speech source to the mth microphone, and the vCm(k)
denotes the combined noise which consists of the directional

and spatially white Gaussian noises.
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If we indicate the received speech signal s(k − τm) as

xm(k), and choose the first microphone as reference, it can

be easily seen that:

xm(k) = x1(k − τm1),m = 1, 2, ...,M, (2)

where τm1 stands for the TDOA between the mth and first

microphone. For ULA, according to the array geometry, τm1

can be derived as follows:

τm1 = τm − τ1 = (m− 1)
sin(θ̂)fsd

c
,m = 1, 2, ...,M, (3)

where c is the speed of sound in the air, fs is the sampling

rate, d is the spacing between two adjacent microphones and

θ̂ is the true DOA to be estimated.

3. PROPOSED METHOD

3.1. Phase Difference in the Bispectrum Domain

As most speech signals have asymmetric pdf’s, their skew-

ness are non-zero [14]. Therefore, it is reasonable to analyze

the speech signal in the bispectrum domain.

Recall the signals received by first and mth microphone.

Following Eq.(1)∼(3), they can be rewritten as follows:

y1(k) = x1(k) + vC1 (k)

ym(k) = x1(k − (m− 1)sin(θ̂)fsd

c
) + vCm(k). (4)

Since vGi (k), for i = 1,m, is zero-mean Gaussian, its

bispectrum is identical to zero. According to the derivation

in [16], the following relationships hold for the bispectrum of

y1(k) and the cross-bispectrum between y1(k), ym(k):

By1y1y1(Ω1,Ω2) = Bx1x1x1(Ω1,Ω2)

By1ymy1(Ω1,Ω2) = Bx1x1x1(Ω1,Ω2)e
jΩ1

(m−1)sin(θ̂)fsd
c , (5)

where Bxyz(Ω1,Ω2) stands for the bispectrum of signal

x(k),y(k) and z(k), Ω1 and Ω2 are the bi-frequencies. We

define the bispectrum phase difference (BPD) as the ratio

between By1ymy1 and By1y1y1 :

Im1(Ω1,Ω2)
def
=

By1ymy1(Ω1,Ω2)

By1y1y1(Ω1,Ω2)
= ejΩ1

(m−1)sin(θ̂)fsd
c .

(6)

It can be seen from Eq.(6) that, in theory, the effect of

Gaussian noise has been fully removed in BPD. When multi-

ple microphones are available, one may solve the narrowband

DOA estimation problem using methods such as MUSIC in

each (Ω1, Ω2) unit, by taking the values of Im1(Ω1,Ω2) for

m = 1, ...,M as the multichannel narrowband signals, and

finally combine the estimation results of all (Ω1, Ω2) unit-

s. However, it is computationally expensive. Moreover, al-

though the BPD seems promising theoretically against the

Gaussian noise, in practice, estimating the bispectrums from

short signal sequences causes large error, which limits the per-

formance of bispectrum based DOA estimation.

3.2. Weighted Spatial Bispectrum Correlation Matrix

In order to cope with the problems described above, in this

subsection, we formulate a new matrix called “WSBCM”

which will be used by the DOA estimator in the next subsec-

tion. The WSBCM reflects the spatial correlations between

the phase aligned multichannel BPDs for a hypothesized

DOA, and shows interesting property only when the hypoth-

esized DOA equals to the true one. It avoids estimating

the DOA separately in each (Ω1, Ω2) unit, and exploits the

redundant information of BPDs in the bi-frequency Ω2 to

reduce the negative effect of noise and large bispectrum esti-

mation error. In addition, the WSBCM allows the bispectrum

weighting to further improve the robustness to noise.

For a certain value of Ω1 and Ω2, we define the BPD vec-

tor as:

I(Ω1,Ω2)
def
= [I11(Ω1,Ω2), . . . , IM1(Ω1,Ω2)]

T . (7)

The vector consists of the BPDs of all microphones in the

(Ω1,Ω2) unit. Obviously, an explicit theoretical expression

of the BPD vector can be derived according to Eq.(6), there-

fore, if we know the true DOA exactly, the BPDs can be to-

tally compensated by a corresponding “BPD compensation

vector”. Here a BPD compensation vector for a hypothesized

DOA θ is defined as:

C(θ,Ω1)
def
= [1, e−jΩ1

sin(θ)fsd
c , . . . , e−jΩ1

(M−1)sin(θ)fsd
c ]T .

(8)

Then we compensate the BPDs using the compensation

vector as follows:

IC(θ,Ω1,Ω2)
def
= I(Ω1,Ω2) ◦C(θ,Ω1), (9)

where IC(θ,Ω1,Ω2) is the phase-compensated BPD vector,

and the symbol “◦” stands for the Hadamard product. Once θ
is equal to θ̂, according to Eq.(6)(8)(9),

IC(θ,Ω1,Ω2) = Γ+E(θ,Ω1,Ω2), (10)

where Γ = [1, 1, . . . , 1]T , which indicates that BPDs are

phase aligned, and E(θ,Ω1,Ω2) is an error term. As is illus-

trated in Fig.1, the bispectrum of the speech signal does not

distribute uniformly in all (Ω1,Ω2) units. In some speech-

absent (Ω1,Ω2) units, the large BPD error (i.e. the error of

the elements of I(Ω1,Ω2)) exists, which will indirectly make

the E(θ,Ω1,Ω2) also large compared with Γ. Therefore, it is

better to consider only the “speech” units in the bispectrum.

We select the “speech” units by the bispectrum weight

w(Ω1,Ω2) with non-zero values only in the “speech” units.

The w(Ω1,Ω2) is simply defined according to the amplitude

of the bispectrum in each unit:

w(Ω1,Ω2)
def
= max(|By1y1y1(Ω1,Ω2)| − ζ, 0), (11)
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Fig. 1. Example of the relationship between the BPD es-
timation error and the bispectrum amplitude of one speech
frame. Compared with (c), the circled areas in (b) have large
BPD estimation error. These areas correspond to the low-
amplitude non-speech areas in (a).

where | · | is the “taking the amplitude” operator, and ζ is a

threshold. The weight of w(Ω1,Ω2) is set to be zero if its

bispectrum amplitude is lower than ζ.

With these bispectrum weights, we define the WSBCM

which contains the spatial correlation information of the

phase aligned BPDs for a hypothesized DOA as follows:

R(θ)
def
=

∑
Ω1,Ω2

w(Ω1,Ω2)[I
C(θ,Ω1,Ω2)][I

C(θ,Ω1,Ω2)]
H .

(12)

We assume that in the speech bispectrum units, the error

term in Eq.(10) can be ignored. Then, once the hypothesized

DOA θ is equal to θ̂, according to Eq.(10)(12),

R(θ) =
∑

(Ω1,Ω2)∈ΩS

w(Ω1,Ω2)ΓΓ
H

= η ·

⎡
⎢⎣

1 . . . 1
...

. . .
...

1 . . . 1

⎤
⎥⎦ , (13)

where ΩS denotes the set of speech units in the bispec-

trum which are selected by the bispectrum weight, and

η =
∑

(Ω1,Ω2)∈ΩS
w(Ω1,Ω2) which is a constant in a certain

frame given w(Ω1,Ω2). In this case, R(θ) is a matrix of rank

1. If θ �= θ̂, the R(θ) will be semi-definite, and its rank will

be greater than 1.

Now let’s further analyze the definition of R(θ) in E-

q.(12). According to Eq.(6)∼(9), the factor IC(θ,Ω1,Ω2) in

Eq.(12) is actually not a function of Ω2 theoretically. There-

fore, if ignoring the effect of w(Ω1,Ω2), as the values of

IC(θ,Ω1,Ω2) are repeated for different Ω2’s, it seems that

summing over all Ω2’s brings no more information than just

summing over an arbitrary fixed Ω2. However, because the

factor I(Ω1,Ω2) in IC(θ,Ω1,Ω2) is computed from the esti-

mated bispectrums, in practice, these values of IC(θ,Ω1,Ω2)
for different Ω2’s will not exactly stay unchanged. Then by

summing over all Ω2’s, the redundant information in the bi-

frequency Ω2 brings more data to suppress the effect of noise

and bispectrum estimation error, and to test the degree of

alignment of phase compensated BPDs for a hypothesised

DOA.

3.3. DOA estimator

In this subsection, we define a new DOA estimator based on

the eigenvalue analysis of the WSBCM. Let us perform the

eigenvalue decomposition of R(θ) and let λ1(θ) ≥ λ2(θ) ≥
. . . ≥ λN (θ) denote the N eigenvalues of R(θ). Obvious-

ly, if the hypothesized DOA θ equals to θ̂, R(θ) is of rank

1, λ2(θ) = . . . = λN (θ) = 0. Therefore, if we form the

following cost function

J(θ)
def
=

1∑N
i=2 |λi(θ)|

, (14)

the cost function reaches the maximum if θ = θ̂. Then the

estimated DOA θ̃ is calculated as:

θ̃
def
= argmax

θ
J(θ). (15)

4. EXPERIMENT

As is mentioned before, although some HOS based method-

s have been proposed, they are designed either for narrow-

band signals or for long data sequences, and could not be

used directly for speech source. So the proposed algorithm

is compared with the well-known SRP-PHAT [5] and broad-

band MUSIC algorithm [3] in spatially white and directional

Gaussian noise conditions under different signal to noise ratio

(SNR)s.

4.1. Experimental setup and evaluation

A rectangular room with size 6× 4× 3 meters is modeled in

the experiment. We employ a ULA which consists of eight

omni-directional microphones, with the spacing between ad-

jacent microphones as 10 cm. The microphones at two ends

of ULA are at (2.5,2.0,1.5), (3.2,2.0,1.5) respectively. The

speech source is located on a horizontal plane (x,y,1.5) with

distance 2m to the center of the ULA. In order to facilitate

the test, We only consider DOAs of the speech source rang-

ing from −90◦ to 90◦ with a step size of 20◦. For directional

noise cases, three possible DOAs of the noise source are con-

sidered, which are 20◦, 40◦ and 60◦ respectively.
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The room impulse response from the source to each mi-

crophone is modeled by image-source method [17]. In the ex-

periment, we set the reverberant time T60 to be 250ms. The

speech source is of 10 seconds, sampled with 16 bit resolu-

tion and 8KHz sampling rate. The received speech signal and

noise signal (directional / spatially white) are separately gen-

erated, and mixed together after being scaled to control the

SNR. The SNR changes from -10dB to 20dB, with a step size

of 5dB. For all evaluated algorithms, the frame size is set to be

512 samples with 50% overlap. 50 Monte Carlo simulations

are conducted for each scenario (noise type, SNR).

We use two frame level metrics, denoted as Accuracy

and Root Mean Square Error (RMSE), to evaluate the perfor-

mance of different algorithms. The estimation is considered

to be correct if |θ̃ − θ̂| < Th, where Th is a threshold which

is commonly set to be 5◦. Then Accuracy and RMSE are

defined as:

Accuracy
def
= Nc/N,RMSE

def
=

√
E{(θ̃ − θ̂)2}, (16)

where Nc is the number of speech frames which have the

correct estimation, N is the number of total speech frames.

We only consider the speech frames for evaluation, and the

speech frames are labeled manually in advance on the clean

speech signal. It should be pointed out that these labels are

never used by any of the three algorithms.

4.2. Experimental results

As are shown in Fig.2(a) and Fig.2(c), in the spatially white

Gaussian noise conditions, the proposed algorithm yields the

highest estimation accuracy in all SNRs considered, and gets

the lowest RMSE at the same time. Even when SNR = -10dB,

the proposed method can still achieve the estimation accuracy

higher than 90%.

Similar comparison results can be observed in Fig.2(b)

and Fig.2(d) for the directional Gaussian noise cases. Obvi-

ously, all the three algorithms suffer from performance degra-

dation compared with the spatially white Gaussian noise cases

in low SNR conditions, but the proposed algorithm degrades

least. It should not come as a surprise that the SRP-PHAT

algorithm totally breaks down under the strong directional

noise. After performing the phase transform (PHAT) which

discards the amplitudes of the cross-spectrums, all the fre-

quency bins are treated with equal significance. As the speech

signal occupies only a few frequency bins, when the strong

directional noise source exists, most frequency bins are dom-

inated by the noise source rather than the speech one. As a

result, the DOA estimator which exploits the information of

all frequency bins (integration or summation) will finally di-

rect its global peak towards the noise source direction. The

broadband MUSIC improves the performance to some exten-

t, nevertheless, the proposed method achieves the best result.

It can be seen that when the SNR is higher than 0 dB, the

proposed method can perform quite reliably.
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Fig. 2. Estimation performance of different algorithms. (a)(c)
Accuracy and RMSE under spatially white Gaussian noise.
(b)(d) Accuracy and RMSE under directional Gaussian noise.
The error tolerance for Accuracy is 5◦

5. CONCLUSION

In this paper, a new DOA estimation method for speech

source in noisy conditions is proposed. The method is based

on the “WSBCM”, which exploits the redundant information

of bispectrum phase differences to reduce the effect of bispec-

trum estimation error for short data sequences and avoids the

separate narrowband DOA estimations. In addition, the WS-

BCM enables bispectrum weighting to further improve the

robustness to noise. We also propose a new DOA estimator

based on the eigenvalue analysis of the WSBCM. Experi-

mental results show that the proposed method can achieve

better performance than existing methods in different noisy

environments.

6. RELATION TO PRIOR WORK

The theoretical basis of the BPD between two signals under

the Gaussian noise in Eq.(5) can be found in [16]. In that pa-

per, the authors proposed a method to estimate the time delay

between two signals by bispectrum analysis. However, it gave

only one estimation for the whole signal sequence, and how

to cope with the bispectrum estimation error for short frames

was not addressed. Moreover, it was not straightforward to

extend the method to the multi-sensor cases. In this paper,

based on the theoretical foundation of BPD, we concentrate

more on how to exploit multiple microphones in a proper way

to improve the DOA performance, and how to make the bis-

pectrum based method applicable to short speech frames.
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