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ABSTRACT

The use of spatial information in multichannel speech enhance-
ment methods is well established but information associated
with the temporal evolution of speech is less commonly ex-
ploited. Speech signals can be modelled using an autoregres-
sive process in the time-frequency modulation domain, and
Kalman filtering based speech enhancement algorithms have
been developed for single-channel processing. In this paper,
a multichannel Kalman filter (MKF) for speech enhancement
is derived that jointly considers the multichannel spatial infor-
mation and the temporal correlations of speech. We model
the temporal evolution of speech in the modulation domain
and, by incorporating the spatial information, an optimal MKF
gain is derived in the short-time Fourier transform domain.
We also show that the proposed MKF becomes a convention-
al multichannel Wiener filter if the temporal information is
discarded. Experiments using the signals generated from a
public head-related impulse response database demonstrate the
effectiveness of the proposed method in comparison to other
techniques.

Index Terms— Speech enhancement, microphone arrays,
Kalman filtering.

1. INTRODUCTION

By using a microphone array, multichannel speech enhance-
ment aims to reduce noise while keeping the target speech
signal undistorted. Speech enhancement is of importance in
speech processing systems such as speech communication,
hearing aids and automatic speech recognition.

Conventional multichannel speech enhancement algo-
rithms include beamforming [1–3], multichannel Wiener
filtering (MWF) [4, 5], and post-filtering techniques [6, 7].
Because the target speech signal is redundantly expressed
in multiple microphones up to a relative transfer function
(RTF), which describes the spatial correlation of multiple
clean signals, optimal filters can be derived that combine
the multichannel noisy observations to estimate the target
clean speech. Although these methods commonly use the
spatial correlations present in multichannel signals for speech
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enhancement, they normally ignore the temporal correlation
that speech signals also exhibit.

The temporal evolution of speech can be modelled as an
autoregressive (AR) process in the modulation domain. By
using linear prediction (LP) to model the temporal correlation
of speech, single-channel Kalman filtering (KF) based meth-
ods [8–15], especially the modulation-domain ones [10–15],
have shown performance superior to conventional methods. In
the multichannel case, due to the spatial and temporal corre-
lation, the clean speech signal of one channel is related both
to the signals of other channels and to the signals of previous
time-frames. This motivates the development of multichannel
Kalman filtering (MKF) for speech enhancement.

In this paper, we aim to make the MKF combine the spatial
information from multichannel observations with the tempo-
ral correlation of speech. However, a difficulty is that the
temporal evolution of speech is reflected in the modulation
domain, while the spatial information is contained in the com-
plex short-time Fourier transform (STFT) domain. A novel
approach which exploits both domains is proposed, and an
STFT-domain-optimal MKF gain is derived to determine the
weight between the STFT-domain LP estimate and the estimate
from noisy observations. We demonstrate that the proposed
MKF becomes the conventional MWF if the LP estimation,
which captures the temporal correlations, is discarded. This
shows that, the proposed MKF additionally takes advantage
of temporal correlations of speech compared with standard
approaches employing the MWF. We show in this paper the de-
velopment of our method, relevant analyses and a performance
evaluation using the signals generated by a public head-related
impulse response (HRIR) database [16].

2. SIGNAL MODEL

Given an M -element microphone array in a reverberant and
noisy environment, theM×1 multichannel signal vector in the
STFT domain, y(n, k) = [Y1(n, k) Y2(n, k) . . . YM (n, k)]T ,
for the n-th frame and k-th frequency bin is written as

y(n, k) = x(n, k) + v(n, k)

= h(k)X1(n, k) + v(n, k), (1)

where x(n, k) and v(n, k) are the reverberant clean speech
and additive noise vectors, respectively, and have the same
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form as y(n, k). X1(n, k) represents the clean signal of the
first channel. The RTF between all channels and the reference
channel, h(k) = [H1(n, k) H2(n, k) . . . HM (n, k)]T , is as-
sumed to be known a priori or to have been already estimated
(e.g. as in [17]). Without loss of generality, we take the first
channel as reference, and therefore H1(n, k) = 1. Our goal is
to estimate the clean reverberant signal X1(n, k) based on the
multichannel noisy observations y(n, k). We assume that the
speech and noise signals are uncorrelated.

3. PROPOSED METHOD

3.1. MKF System Model

First we model the temporal evolution of speech. In the first
step, we only consider the signal of the reference channel and
ignore the spatial information. Since the temporal evolution is
mainly reflected in the magnitude spectrum, we formulate the
LP equation of MKF in the modulation domain as

|x1(n, k)| = A(k)|x1(n− 1, k)|+ dW (n, k), (2)

where | · | takes the magnitude of each element of the vector.
x1(n, k) = [X1(n, k) X1(n− 1, k) . . . X1(n− P + 1, k)]T

is the temporal signal vector of the first channel, and form-
s the state vector of the MKF. A(k) is the speech transi-

tion matrix defined as
[

−aT (k)
I(P−1)×(P−1) 0(P−1)×1

]
, where

a(k) = [a1,k . . . aP,k]T is the LP coefficient vector of order
P . The vector d = [1 0 . . . 0]T is a P × 1 vector, W (n, k) is
a random Gaussian excitation signal with variance δ2W .

In practice, a(k) and δ2W are unknown and must be esti-
mated via LP analysis of a pre-cleaned speech signal, z1(n, k),
from modulation frames as in, for example, [10]. We take
z1(n, k) as the output of a MWF, which is realized as a mini-
mum variance distortion response (MVDR) beamformer fol-
lowed by a single-channel Wiener post-filter [18]. The phase
of z1(n, k) is the same with the MVDR output.

We now incorporate the spatial information to define the
measurement equation. To preserve the spatial information
mainly carried by the phase spectrum, from (1), the measure-
ment equation is defined in the complex STFT domain:

y(n, k) = h(k)X1(n, k) + v(n, k)

= h(k)dTx1(n, k) + v(n, k)

= Q(k)x1(n, k) + v(n, k), (3)

where Q(k) = h(k)dT is an M × P measurement matrix.

3.2. Derivation of MKF

Since the LP equation and measurement equation are defined
in the modulation domain and STFT domain respectively, the
state vector cannot be estimated in the conventional KF frame-
work. In this subsection, an MKF is derived to estimate the
state vector that represents the target clean signal.
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Fig. 1: MKF framework. The frequency index k is omitted for
brevity.

The framework of the proposed MKF is illustrated in Fig. 1.
Similar to the conventional KF, the proposed MKF consists
of a LP step and an update step. In the LP step, an a priori
modulation-domain estimate |x̂1(n|n−1, k)| is calculated and
this is then transformed into the STFT domain x̂1(n|n− 1, k)
by incorporating the phase of the MWF output. In the update
step, by incorporating the noisy observation, the optimal MKF
gain is derived, and used to compute the a posteriori state
vector estimation x̂1(n|n, k). Details of the MKF framework
will be described in the following.

3.2.1. STFT-domain State Vector Prediction

Given the MMSE estimate of the state vector of the previous
frame, x̂1(n− 1|n− 1, k), the amplitude of the state vector in
the current frame can be predicted using (2) as

|x̂1(n|n− 1, k)| = A(k)|x̂1(n− 1|n− 1, k)|. (4)

From |x̂1(n|n − 1, k)|, we can further obtain the STFT-
domain LP estimate x̂1(n|n− 1, k) by inserting the phase of
z1(n, k), such that

x̂1(n|n− 1, k) = Φ(n, k)|x̂1(n|n− 1, k)|, (5)

where Φ(n, k) is a P × P diagonal matrix whose diagonal
elements are the complex exponential phase of z1(n, k).

We define the STFT-domain LP estimation error between
x1(n, k) and x̂1(n|n− 1, k), which will be used later, as

e(n|n− 1, k) = x̂1(n|n− 1, k)− x1(n, k). (6)

3.2.2. STFT-domain State Vector Update

For each new frame, MKF updates the state vector by com-
bining the estimates from LP, x̂1(n|n − 1, k), and the new
observation, y(n, k), so that

x̂1(n|n, k) = x̂1(n|n− 1, k)

+ G(n, k)[y(n, k)−Q(k)x̂1(n|n− 1, k)], (7)

where G(n, k) is the MKF gain.
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Then the error between x1(n, k) and the new estimate
x̂1(n|n, k) is computed as

e(n|n, k)

= x̂1(n|n, k)− x1(n, k)

= x̂1(n|n− 1, k)− x1(n, k)

+ G(n, k)[y(n, k)−Q(k)x̂1(n|n− 1, k)]

= e(n|n− 1, k) + G(n, k)[v(n, k)−Q(k)e(n|n− 1, k)]

= [I−G(n, k)Q(k)]e(n|n− 1, k) + G(n, k)v(n, k).
(8)

To obtain the optimal MKF gain, we define a cost function
under the MMSE criterion as

J(G(n, k)) = E{tr[e(n|n, k)eH(n|n, k)]}. (9)

Setting the derivative of J(G(n, k)) over G(n, k) [19] to zero,

Ĝ(n, k) =Ree(n|n− 1, k)QH(k)×
[Q(k)Ree(n|n− 1, k)QH(k) + Rvv(n, k)]−1,

(10)

where Ree(n|n − 1, k) = E{e(n|n − 1, k)eH(n|n − 1, k)}
is the covariance matrix of the STFT-domain estimation error,
Rvv(n, k) = E{v(n, k)vH(n, k)} is the multichannel noise
covariance matrix which can be estimated using [20–22].

The matrix Ree(n|n−1, k) is unknown and will be estimat-
ed in the next subsection. We note that since Q(k)Ree(n|n−
1, k)QH(k) is of rank-one according to the definition of Q(k)
in (3), the matrix inverse in (10) must be replaced by the
pseudo-inverse if Rvv(n, k) = 0.

3.2.3. Estimating Ree(n|n− 1, k)

Assuming from (5) the phase of x̂1(n|n− 1, k), which is the
same as that of the MVDR output, is a good approximation
of the phase of x1(n, k). Then x1(n, k) can be rewritten as
x1(n, k) = Φ(n, k)|x1(n, k)|. From (6), we can obtain

e(n|n− 1, k) = Φ(n, k)[|x1(n, k)| − |x̂1(n|n− 1, k)|]
= Φ(n, k)ε(n|n− 1, k), (11)

where ε(n|n − 1, k) = |x1(n, k)| − |x̂1(n|n − 1, k)| is the
modulation-domain estimation error vector.

Define Rεε(n|n−1, k) = E{ε(n|n−1, k)εH(n|n−1, k)}
as the covariance matrix of the modulation-domain estimation
error. It can be updated based on the conventional single-
channel modulation-domain KF [10], as

Rεε(n|n− 1, k) = A(k)Rεε(n− 1|n− 1, k)AH(k)

+ δ2WddH . (12)

From (11), by considering the phase information, Ree(n|n−
1, k) in (10) can be computed as

Ree(n|n− 1, k) = Φ(n, k)Rεε(n|n− 1, k)ΦH(n, k).
(13)

Algorithm 1: MKF

x̂1(n|n, k) = [Y1(n, k) . . . Y1(n−P +1, k)]H , n ≤ P .
for n = P + 1 to N do

a) Determine |x̂1(n|n− 1, k)| and Rεε(n|n− 1, k)
from (4) and (12);
b) Determine x̂1(n|n− 1, k) and Ree(n|n− 1, k)
from (5) and (13);
c) Compute the MKF gain G(n, k) from (10);
d) Update the state vector x̂1(n|n, k) using (7);
e) Update Ree(n|n, k) and Rεε(n|n, k) from (14)
and (15);

end
N is the number of frames.

The updating steps in (12) and (13) are from the prediction
step. After incorporating the noisy observation, substituting
(10) into (8), similarly to the conventional KF, we finally have

Ree(n|n, k) = [I− Ĝ(n, k)Q(k)]Ree(n|n− 1, k). (14)

Note that Φ−1(n, k) = ΦH(n, k), so

Rεε(n|n, k) = ΦH(n, k)Ree(n|n, k)Φ(n, k). (15)

The steps of the proposed MKF for each frequency k are
summarized in Algorithm 1. The clean signal estimation of
the first channel X̂1(n, k) is finally taken as dT x̂1(n|n, k).

3.3. Relationship with MWF

If the estimates from LP are not used, by setting x̂1(n|n −
1, k) = 0, e(n, k) in (6) becomes−x1(n, k), and Q(k)e(n, k)
becomes −x(n, k). Then Q(k)Ree(n|n − 1, k)QH(k) in
(10) turns into the speech covariance matrix Rxx(n, k) =
E{x(n, k)xH(n, k)}. Note that dTh(k) = 1, then

dT x̂1(n|n, k) = dTh(k)dT x̂1(n, k)

= dTQ(k)Ĝ(n, k)y(n, k)

= dTRxx(n, k)×
[Rxx(n, k) + Rvv(n, k)]−1y(n, k). (16)

Thus the MKF becomes the MWF in [4]. Therefore, the pro-
posed MKF can be seen as integrating the temporal evolution
of speech into the conventional MWF.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Setup

Algorithms are tested using the cafeteria environment in the
HRIR database [16], which is represented by measured RIRs
for a pair of behind-the-ear hearing aids, each with three micro-
phones. The target speaker is seated opposite the listener in the
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look direction (RIR 1 A in [16]) while the optional interferer
is to the left of the listener (RIR 1 C in [16]).

A 10 s speech signal with 8 kHz sampling rate is first gener-
ated from randomly selected sentences of the IEEE sentences
database [23], and then convolved with RIR 1 A to yield the
clean reverberant speech. Algorithms are tested both with and
without an interfering source. For the case of no interferer,
noisy reverberant signals are generated by adding multichannel
ambient noise or babble noise recorded in the same room, at
signal-to-noise ratios (SNRs) ranging from -5 dB to 15 dB. For
the with-interferer case, the SNR of the babble noise is fixed at
10 dB, and the signal-to-interference ratio (SIR) ranges from
-5 dB to 15 dB. The interferer signal was either speech shaped
noise (SSN) or white Gaussian noise (WGN).

The proposed method is compared with the widely used
MVDR and MWF algorithms. Since the proposed MKF and
MVDR exploit the RTF, the MWF is, for fair comparison,
implemented by concatenating an MVDR beamformer and
single-channel Wiener filter, which can generally achieve bet-
ter performance than the implementation [4] without using
the RTF. The STFT frame duration for all algorithms is 16 ms
with 4 ms frame hop. The RTF vector is computed using real
RIRs truncated to 16 ms, and the first channel is taken as the
reference. The multichannel noise covariance matrix is esti-
mated using [20]. In the proposed MKF, the LP order P = 2,
and the LP coefficients and excitation variance are estimated
using 8 acoustic frames with a hop of 4 acoustic frames.

4.2. Experimental Results

The performance is assessed with the short-time objective
intelligibility (STOI) [24], perceptual evaluation of speech
quality (PESQ) [25], and frequency-weighted segmental SNR
(FwSegSNR) [26] metrics. For each metric, by taking the raw
noisy input of the first channel as reference, we present both
the improvement (“∆[·]”) and the raw value (“[·]raw”) of the
reference signal. The results are averaged over 10 trials.

The results without any interfering source are shown in
Fig. 2a. The results show that the algorithms have similar
improvement in STOI, and the proposed method achieves sub-
stantially larger improvements than other methods in PESQ
and FwSegSNR. Although the MWF outperforms the MVDR
in PESQ and FwSegSNR, when SNR ≤ 10 dB, by exploiting
the temporal evaluation of speech, the MKF yields at least
0.095 improvement in PESQ and 0.83 dB improvement in
FwSegSNR relative to the MWF. It is also seen that the im-
provements in all metrics decrease when the SNR increases.
This is because in such conditions the difference between the
clean and noisy speech becomes smaller, then there is less
room for improvement.

Similar results are shown in Fig. 2b for the with-interference
scenarios. Again, the proposed MKF always achieves the
best performance in ∆PESQ and ∆FwSegSNR, and has the
greatest ∆STOI in almost all cases. It can also be observed
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Fig. 2: Comparison results for (a) different SNRs and noise
types without an interfering source, (b) different SIRs and
interferering source types with 10 dB SNR babble noise always
present. The mean metric of the raw signals is shown as a dash-
dot line using the rightmost axis; the improvements obtained
from the algorithms are shown in bars using the leftmost axis.

that the improvements in the WGN case is generally greater
than those in the SSN case, since the spectrum of SSN is more
similar to that of the speech signal, making the speech signal
more likely to be affected by noise.

5. CONCLUSION

An MKF based speech enhancement method has been present-
ed. The key feature of the method is jointly exploiting both
spatial and temporal information simultaneously in the design
of the multichannel speech enhancement procedure in the con-
text of MKF. By performing LP in the modulation domain and
incorporating the spatial information in the STFT domain, an
optimal MKF gain is derived to compromise between the LP
estimation and observation adaptively. It has been shown that
the MKF becomes the MWF when the LP estimate is not used.
Experiments show that the MKF outperforms conventional
methods in a range of noisy reverberant conditions.
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