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Abstract
In this paper, we present a novel DOA estimation method for
human speech using subband weighting. Existing DOA esti-
mation methods still can not perform quite reliably in low SNR
condition. To improve the robustness of DOA estimator in noisy
environment, we propose a novel DOA estimation approach.
Firstly, the speech signal of each channel is passed through a
Gammatone filterbank to obtain a set of time-domain subband
signals. Secondly, we achieve TDOA estimation based on a new
cost function in each subband. Subband weight is calculated to
emphasis the estimation results of subbands with high probabil-
ity containing speech signals. Finally, DOA is determined by
the estimated TDOA and geometry of microphone array. Ex-
perimental results show that the proposed subband weighting
based method outperforms SRP-PHAT and broadband MUSIC
algorithm in highly noisy environment.
Index Terms: Direction of arrival estimation, array signal pro-
cessing, Gammatone filters, subband weighting.

1. Introduction
Direction of arrival (DOA) estimation, which aims at determin-
ing the direction of sound source with microphone arrays, has
received much attention due to its wide applications. It plays an
important role in video conferences, hand free devices, or inter-
active robots. The estimation is often considered to be worked
in noisy environment.

In general, DOA methods are classified into three cate-
gories: high-resolution spectral (HOS) estimation [1, 2], steered
beamformer response power (SRP)[3, 4], and time difference of
arrival (TDOA) estimation [5, 6]. A well-known HOS method is
MUSIC algorithm [1]. The MUSIC algorithm is based on sub-
space analysis of spatial correlation matrix, and has achieved
great success for narrowband signals. Although some broad-
band approaches [7, 8] are presented, it still suffers from per-
formance degradation when applied to broadband signals. HOS
methods also rely highly on the source number estimation accu-
racy and stationarity assumption of noise signal. SRP methods
steer a spatial beamformer over all predefined directions to ob-
tain a steered response, and estimate direction with the largest
steered response as DOA. As a typical algorithm of SRP meth-
ods, SRP-PHAT [9] has been proved to be robust in moderate
noisy environments, but the computational complexity is high
when the element number is large. TDOA based estimation is a
two step procedure. TDOAs are calculated firstly, then DOA is
obtained according to the TDOAs and geometry of microphone
array. The most widely used TDOA estimation algorithm is
GCC methods [10]. They work well in moderately noisy and
non-reverberant environments, but degrade much when noise

level or reverberation is high.
In this paper, we propose a novel DOA method for hu-

man speech using subband weighting. The new approach is
in framework of TDOA estimation. Firstly, the speech signal
of each channel is passed through Gammatone filters to obtain
time-domain subband signals. Secondly, TDOA estimation is
performed on filtered signals in each subband. A new TDOA
method for multichannel signals is used here. Finally, the sub-
band weight is calculated to emphasis the estimation results of
subbands which have high probability containing speech sig-
nals. In this way, subband estimation results with higher degree
of confidence have a more prominent impact on the final esti-
mation. Experimental results show that the proposed subband
weighting based method outperforms SRP-PHAT and broad-
band MUSIC algorithm in highly noisy conditions.

The rest of the paper is organized as follows. Section 2 for-
mulates the problem and gives some assumptions. In section 3
we introduce the proposed subband weighting based DOA al-
gorithm. Experimental results are given in section 4, and finally
section 5 concludes the paper.

2. Problem formulation and assumptions
Suppose there exists a uniform linear microphone array with
N elements and the sound source is in the far field [11]. The
speech source signal propagates radiatively and for the straight
propagation path the sound level falls off as a function of dis-
tance from the source. The signal captured by the nth micro-
phone at time k can be expressed as follows:

yn(k) = ans(k − τn) + vn(k), n = 1, 2, . . . , N (1)

where an is the attenuation factor, τn is the propagation time
between source and the nth microphone, and vn(k) is additive
noise at the nth microphone. In ideal cases, an is set to be 1,
and the additive noise is assumed to be uncorrelated with both
source signal and noise signals received by other microphones.

The time difference of arrival between the ith and jth mi-
crophones is defined as

τij = τi − τj (2)

For a linear and equispaced array, choosing the first micro-
phone as reference, the TDOA between the first and nth micro-
phone is calculated as

τi1 = (n− 1)τ, n = 2, 3, . . . , N (3)

where τ is the TDOA between the first two microphones.
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With the estimated TDOA, the direction of arrival is given
according to the geometry of microphone array:

θ = arcsin(
τc

fsd
) (4)

where c is the propagation speed of sound in the air, which is
usually set to 343m/s, fs is the sampling rate, d is the distance
between two adjacent microphones, and θ is the angle from nor-
mal of array to the wave ray, ranging from −90◦ to 90◦ with
interval of 1◦ .

3. DOA estimation based on subband
weighting

The proposed algorithm is based on the fact that different sub-
bands of the signals are not affected by noise equally, and those
containing more speech tend to be more robust. Thus by empha-
sizing the effect of estimation results on these subbands, better
performance in noisy environment can be expected. Methods of
decomposing the broadband signal into subband signals, time
difference of arrival estimation on each subband, and adaptive
subband weight calculation will be discussed in this section.

3.1. Signal decomposition

In order to decompose the received broadband signal into a set
of narrowband signals, a filterbank consisting of 64 overlapping
bandpass Gammatone filters is used here. The reason for choos-
ing Gammatone filterbank is that it simulates the cochlea analy-
sis of human ear effectively, and has been widely used in many
acoustic analysis systems. The center frequencies of these filter-
s are uniformly spaced on the equivalent rectangular bandwidth
(ERB) scale between 50 Hz and 8000 Hz [12]. By passing the
broadband signal through these filters, 64 narrowband signals
are obtained.

We know that, each Gammatone filter in the filterbank is
uniform, so when passing the two channel broadband signals
through the same Gammatone filter, the same phase shift is ob-
tained for broadband signals. Therefore, the TDOA of broad-
band signals is preserved after being decomposed into a set of
narrowband signals, and it is reasonable to estimate TDOA in
each subband.

3.2. Time difference of arrival estimation

3.2.1. Subsample shifting

TDOA estimation algorithms always involve shifting signal of
one channel with a hypothesized TDOA to align with signal of
another channel. As we aim at estimating DOA ranging from
−90◦ to 90◦ with interval of 1◦, the TDOAs corresponding to
some azimuths are not integer multiples of the sampling inter-
val. However, the discrete signal cannot be shifted by decimal
samples directly, as a result, subsample shifting is needed.

We cope with the subsample shifting problem based on
Discrete Fourier Transform (DFT) and Inverse Discrete Fourier
Transform (IDFT). According to the property of Fourier trans-
form, time delay corresponds to phase shift in the frequency
domain, so given a signal s(k), subsample shifting formula can
be simply expressed as:

ŝ(k) = s(k − τ) = IDFT
{
S(ω)e−jωτ

}
(5)

where ŝ(k) is the shifted signal of s(k), τ is the TDOA, IDFT
denotes inverse Fourier transform, and S(ω) is the Fourier
transformation of s(k) .

3.2.2. Cost function for TDOA

Time delay estimation is operated in each subband on multi-
channel subband signals. Similar to [9], a cost function using
the spatial correlation matrix (SCM) for multichannel case is
proposed here.

Define a L×Nsignal matrix consisting of subband signals
from different channels

y(k, τ, f) = [y1(k, f) y2(k + τ, f) . . . yN [k + (N − 1)τ, f ]]T

(6)
where τ is the hypothesized TDOA, N is the number of chan-
nels in the microphone array, yi(k, f) is the f th subband sig-
nal vector with size L × 1 from the ith channel at time k,
i = 1 . . . N , and L is the frame length of yi(k, f). Subband
signals of channel 2 ∼ N are shifted to align with channel 1
given τ .

The corresponding SCM is further defined as

R(k, τ, f)

= E
[
y(k, τ, f)yT (k, τ, f)

]

=


σ2
y1 ry1y2(k, τ, f) . . . ry1yN (k, τ, f)

ry2y1(k, τ, f) σ2
y2 . . . ry2yN (k, τ, f)

...
...

. . .
...

ryNy1(k, τ, f) ryNy2(k, τ, f) . . . σ2
yN


(7)

It is clear that only if two or more signals are perfectly
aligned, det[R(τ, f)] equals to 0, where det[·] stands for de-
terminant, then the cost function for TDOA is defined as the
reciprocal of SCM’s determinant measuring the correlation a-
mong these aligned signals:

J(k, τ, f) =
1

det[R(k, τ, f)]
(8)

As R(k, τ, f) is a semi-positive definite matrix, the cost
function is always non-negative. For a single subband, the T-
DOA is estimated as τ making the cost function reach the max-
imum.

In practice, instead of only by the current subband signal
data as in (7), we modify R(k, τ, f) by smoothing the results
over the past frame, in order to overcome the fluctuation of SCM
estimation:

R̂(k, τ, f) = αR̂(k − L, τ, f) + (1− α)R(k, τ, f) (9)

where R̂(k, τ, f) and R̂(k−L, τ, f) stand for modified SCM of
current frame and last frame respectively, L is the frame length,
and α is updating factor with range [0,1], which is set to 0.8
in this paper. By exploiting the smoothing, more reliable SCM
estimation is achieved. As a result, the formula provides a much
more stable TDOA estimation performance.

3.3. Subband weight calculation

We compute the cost function for TDOA on each subband.
Each hypothesized TDOA corresponds to an azimuth within the
range of [−90◦, 90◦]. A 64× 181 dimension matrix which has
one subband cost function stored in each row can be obtained.
In order to emphasize the results of subbands containing more
speech signals, the fullband TDOA cost function is calculated
as the weighted sum of subband TDOA cost functions.
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The subband weight is defined as

ω(k, f) = (
1

N

N∑
i=1

{E[yi(k, f)yi(k, f)T ]})p (10)

where N is the number of channels of microphone array, and
p is a control factor. When p = 0, ω(k, f) equals to 1, all
subbands have the same effect. The higher the value of p, the
more effect “speech” subbands will have on the final estimation.
However, we can not ensure that subbands with high weight
are all “speech” subbands. As a tradeoff between the effect of
“speech” subbands and other subbands, p is set to be 2. Indeed,
the subband weight indicates the energy of each subband. we
assume that the noise signal has relatively flatter energy distri-
bution on each subband than speech signal, therefore, higher
energy implies higher possibility of speech.

Before the weighted sum operation, the cost function of
each subband is normalized. The normalization procedure is
expressed as

Ĵ(k, τ, f) =
J(k, τ, f)

minτ J(k, τ, f)
(11)

where minτ J(τ, f) denotes the minimum value of f th subband
cost function. The cost function value of all subbands are nor-
malized to the same scale after the procedure. Usually, sub-
bands without significant peaks in cost functions are noise sub-
bands, after normalization, the cost function values get close to
1, and these subbands will have little effect on the final estima-
tion.

The fullband cost function J̄(k, τ) is defined as the weight-
ed sum of subband cost function:

J̄(k, τ) =

M∑
f=1

ω(k, f)Ĵ(k, τ, f) (12)

where M denotes the number of subbands.
Fig.1 shows the figure of a weighted cost function matrix.

The bottom plot shows the fullband cost function. A sharp peak
is observed in the fullband cost function. The final TDOA at
time k is estimated as

τ̃k = argmax
τ

J̄(k, τ), (13)

Substituting τ in eq.(4) by the estimated TDOA τ̃k, we can
obtain the estimated direction of arrival.

4. Experiment
To evaluate the performance of the proposed subband weighting
based algorithm, the experiments are performed on synthetic
data. The proposed algorithm is compared with the SRP-PHAT
[9] and broadband MUSIC algorithm[8] in different noisy con-
ditions.

4.1. Experimental setup

A rectangular room with plane reflective boundaries is modeled
in the experiment. The size of the room is 6 × 4 × 3 meters.
Four omnidirectional microphones are placed linearly and near
the center of the small room, the location of these microphones
are (3.00,2,2), (3.08,2,2), (3.16,2,2), (3.24,2,2) with space of
0.08m between two adjacent microphones. The speech source
is located on a horizontal plane (x,y,2) with distance 2m to the
center of the microphone array, ranging from −90◦ to 90◦.
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Figure 1: Figure of a weighted cost function matrix, the true
DOA is 30◦. The bottom plot shows the fullband cost function.

Room impulse responses from the location of speech source
to microphones are modeled by image-source method [13], and
a Matlab code implementation [14] is used to generate the mi-
crophone array data. The speech source is with durations of 10
seconds, microphone data is sampled with 16 bit resolution and
sampling rate of 8KHz. We use two types of noise: white Gaus-
sian noise and pink noise, to evaluate algorithms in white and
colored noisy conditions. The noise added to each microphone
is independent with each other, and scaled to control the SNR.

For all evaluated algorithms, the analysis frame size is set
to be 256 samples with no frame shift. Algorithms are evaluat-
ed under different SNR conditions. For each SNR, 100 Monte
Carlo simulations are conducted for DOA from −90◦ to 90◦

with 5◦ step size, resulting in 3600 simulations in total. The
SNR changes from -10dB to 20dB, with a step size of 5dB.

4.2. Experimental results

Two frame level metrics, denoted as Accuracy and Root Mean
Square Error (RMSE), are used to evaluate the performance of
different algorithms. The estimation of one frame is considered
to be correct if the difference between estimated DOA and real
DOA does not exceed a certain threshold, which is commonly
set to be 5◦, then the Accuracy and RMSE are defined as below:

Accuracy =
Nc
N

(14)

RMSE =

√√√√ 1

N

N∑
i=1

(θ − θ̂)2 (15)

Where Nc is the number of frames which have the correct es-
timation, N is the number of total frames, θ and θ̂ denote the
estimated DOA and real DOA respectively.

Fig.2 shows the comparison results of broadband MU-
SIC, SRP-PHAT and the proposed subband weighting method.
The performance under white Gaussian noise is illustrated in
Fig.2(a) and Fig.2(c). It can be seen clearly that proposed al-
gorithm yields great improvement in accuracy under low S-
NR conditions, and achieves performance similar to broadband
MUSIC and better than SRP-PHAT when SNR is high. The
proposed algorithm also gets the lowest RMSE under all SNR
conditions considered. The performance under colored pink
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Figure 2: Estimation performance of different algorithms.
(a)(c) Accuracy and RMSE with white Gaussian noise. (b)(d)
Accuracy and RMSE with colored pink noise. The error toler-
ance for Accuracy is 5◦
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Figure 3: DOA estimates for a continuous speech with 8dB SNR
white Gaussian noise. The true DOA is 45◦.

noise is illustrated in Fig.2(b) and Fig.2(d). Similar comparison
results are observed under colored noise condition. It should
be noted that all the three algorithms suffer from performance
degradation compared with white noise case in low SNR condi-
tions, but the proposed algorithm degrades least. It is possibly
due to the fact that we just assume the energy distribution of
uncorrelated noise is flatter than speech, which is a relatively
loose constraint in most conditions.

In Fig.3, the DOA estimates of three algorithms are shown
for a continuous speech under white noise condition at 8dB S-
NR . The true DOA lies in 45◦, 84 frames are contained in the
speech. Obviously, the proposed algorithm yields the most sta-
ble and accurate estimation compared with the other two algo-
rithms, which also confirm the efficiency of the proposed algo-
rithm.

5. Conclusion
In this paper, we improve the performance of DOA estimation
in noisy conditions based on subband weighting. Under the as-
sumption that different subbands of the signals are not equally
affected by noise, we estimate TDOA on each subband, and em-

phasize the estimation results of subbands which contains more
speech signals. Experimental results on white and colored noise
indicate that the proposed algorithm can achieve higher estima-
tion accuracy and lower estimation error than the widely used
SRP-PHAT and MUSIC algorithm.
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