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Abstract
Although various DOA estimation methods for human speech
have been presented, most of them assume noises received by
different microphones are undirected. However, strong direc-
tional interferences often also exist in practical scenarios and
the performances of existing methods degrade seriously in such
case. In this paper, we present a new interference robust DOA
estimation method for human speech. Historical information
and temporal correlation are taken advantage to deal with the
problem. Firstly, utilizing the historical DOA estimates, we
perform “post-beamforming” in the last frame to suppress the
directional interferences. Then exploiting temporal correlation
of speech spectra, frequency weights which highlight the effects
of speech frequency bins are calculated based on the estimated a
priori SNR of enhanced signal. Finally, we propose a new DOA
cost function using frequency-weighted spatial correlation ma-
trix to estimate the DOA of speech source. Experimental results
show that the proposed method outperforms existing algorithms
in reverberant environments with additive white Gaussian nois-
es in the presence of different kinds of interferences.

Index Terms: direction of arrival estimation, microphone array
signal processing, directional noise

1. Introduction
Direction of arrival (DOA) estimation mainly refers to deter-
mining the direction of sound sources in an acoustic environ-
ment using microphone arrays. It has drawn much attention due
to its wide applications, such as in hand free devices, audio-
visual conferences, automotive systems and surveillance. In
most scenarios the sources of interest are human speech sources.

Generally, conventional DOA estimation methods can be
classified into three categories: high-resolution spectral (HOS)
estimation[1,2,3], steered beamformer response power (SR-
P)[4,5], and time difference of arrival (TDOA) estimation[6,7].
Although many approaches have been proposed, these classi-
cal methods assume that noises in different microphones are
undirected. However, in practical scenarios, directional inter-
ferences often also exist. If the interference signals are weak,
conventional methods may stay robust by finding the maxi-
mum peak in the DOA cost function. However, as the speech
is non-stationary, the peak of cost function corresponding to
DOA of speech source is not always global maximum, especial-
ly when strong interferences exist. One may take interferences
as regular sources, and solve the problem in the framework of
multi-source DOA estimation. However, multi-source estima-
tion methods always require the knowledge of the source num-
ber which is often unknown in advance in the real environmen-
t. Furthermore, additional efforts must be paid to distinguish

which direction corresponds to the speech source, which is also
a difficult task.

In this paper, we aim at estimating the DOA of the tar-
get speech source by finding only the maximum peak in the
DOA cost function. A novel DOA estimation method for hu-
man speech which is robust to the non-speech interferences is
proposed. We utilize the historical information and temporal
correlation of consecutive speech spectra in the proposed al-
gorithm. First, depending on the historical DOA estimates,
we perform post-beamforming to obtain a single-channel sig-
nal in which the interference signals are suppressed. Then by
exploiting the correlation of frequency spectra in consecutive
speech frames, a priori SNR based frequency weights are com-
puted. The SNR-based frequency weights have large values in
the speech frequency bins and zeros in the non-speech frequen-
cy bins. Finally, a new DOA cost function is defined based on
the frequency-weighted spatial correlation matrix (FWSCM) u-
tilizing the computed frequency weights. The new cost func-
tion enables us to enlarge the impact of speech frequency bins
by frequency weighting, but avoids estimating DOAs separate-
ly in each band. Experimental results demonstrate that the pro-
posed method outperforms existing algorithms in reverberant
and noisy environments in the presence of different kinds of in-
terferences.

The rest of the paper is organized as follows. Section 2 for-
mulates the problem and provides assumptions. In section 3 we
introduce the proposed DOA estimation method. Experimental
results are given in section 4, and finally section 5 concludes the
paper.

2. Problem statement
Suppose that there exists a reverberant environment with an N-
element uniform linear array (ULA), a speech source and sever-
al non-speech interferences. The sound source and interferences
are all in the far field [8] and uncorrelated with each other.

As we are only interested in the speech source and the aim
is to estimate the DOA of the interested source, for the sake of
simplicity, we consider the received signal at the microphone
array as a combination of the direct path component and the
combined noise. The combined noise consists of the echo of
the speech signal, the received interference signals, and addi-
tive white Gaussian noises. Using short-time Fourier transform
(STFT), the received signal in time frame t and frequency bin f
can be expressed in a vector form as:

Y (t, f) = A(f)S(t, f) +Nc(t, f), (1)

where Y (t, f) and Nc(t, f) are both N × 1 vectors denoting
the STFT of the received signal and the combined noise, respec-
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tively. S(t, f) is the STFT of speech source, and A(f)S(t, f)
stands for the direct path part of received speech signal. A(f)
is called the steering vector of microphone array.

For ULA, according to the geometry, the steering vector is
expressed as follows:

A(f) = [1, e−i2πf
sin(θ̂)fsd

c , . . . , e−i2πf(N−1)
sin(θ̂)fsd

c ]T , (2)

where c is the propagation speed of sound in the air, which is
usually set to 343m/s, fs is the sampling rate, d is the spacing

between two adjacent microphones, and θ̂ is the true DOA to be
estimated.

3. Proposed method
As described above, in the proposed method, the frequency
weights are calculated firstly, and then used by the DOA cost
function. In this section, we choose to begin with introducing
the DOA cost function which utilizes the frequency weights.
From the derivation of the cost function, we can make clear the
needed characteristics of frequency weights for robust DOA es-
timation. Then we will show how to calculate the frequency
weights with these characteristics.

3.1. Cost function for DOA

As we all know, speech signals and non-speech signals always
have different frequency distributions, so better DOA estimation
results can be expected by accentuating the effect of “speech”
frequency bins in the overall DOA cost function. However, it
is time-consuming if we estimate DOA in each frequency bin
and weighted-sum-up the narrowband results to get the wide-
band estimation. Here a new cost function for DOA estimation
is proposed based on the FWSCM, which enables frequency
weighting and avoids the separated narrowband DOA estima-
tion.

It can be seen from Eq.(2) that for the direct path speech
signal, if the signal impinges on the microphone array from non-
perpendicular directions, phase shifts are generated on different
microphones. In other words, if we estimate the DOA correctly,
the phase shifts of direct path signal can be totally compensated.

Define a phase compensation vector for a hypothesized
DOA θ in frequency bin f as:

C(θ, f) = [1, ei2πf
sin(θ)fsd

c , . . . , ei2πf(N−1)
sin(θ)fsd

c ]T . (3)

Then the phase compensation of the received signal is de-
rived as follows:

Y c(θ, t, f) = C(θ, f) ◦ Y (t, f)
= C(θ, f) ◦ (A(f)S(t, f)) + C(θ, f) ◦Nc(t, f),

(4)

where Y c(θ, t, f) is the phase-compensated signal vector, the
symbol “◦” stands for the Hadamard product. Obviously, once

the hypothesized DOA θ is equal to θ̂, then

Y c(θ, t, f) = ΓS(t, f) + C(θ, f) ◦Nc(t, f), (5)

where Γ = [1, 1, . . . , 1]T , which indicates that the speech sig-
nals received by different microphones are phase aligned.

As the frequency distributions of speech and interference
signals are different, we assume that in speech frequency bins,
the interference component is absent. If we further neglect the

effect of white Gaussian noise and reverberant part of speech
signal in these frequency bins, Eq.(5) can be simplified as:

Y c(θ, t, f) = ΓS(t, f), f ∈ Ωs, (6)

where Ωs is the set of speech frequency bins.
One common way of selecting the speech frequency bins

from the entire frequency bins is to use a set of weights and set
zero weights to the non-speech bins. Furthermore, even for the
speech frequency bins, different bins are not equally affected
by non-speech components, as a result, larger weights should
be given to the more “pure” speech frequency bins. Given the
weight w(t, f) for the f th frequency bin in time frame t (“how
to compute the weight” will be described later), we define the
FWSCM as:

R(θ, t) =
∑
f∈Ω

[w(t, f)Y c(θ, t, f)][w(t, f)Y c(θ, t, f)]H

=
∑
f∈Ω

w2(t, f)Y c(θ, t, f)[Y c(θ, t, f)]H , (7)

where Ω is the set of all frequency bins, “[·]H” denotes Hermi-
tian transpose.

If w(f) has non-zero values only in speech frequency bins

and the hypothesized DOA θ is equal to θ̂, according to Eq.(6),

R(θ, t) =
∑
f∈Ωs

w2(t, f)|S(t, f)|2ΓΓH

= η(t) ·

⎡
⎢⎢⎢⎣

1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

⎤
⎥⎥⎥⎦ , (8)

where η(t) =
∑

f∈Ωs
w2(f)|S(t, f)|2 which is a constant in a

certain frame given w(f). In this case, R(θ, t) is matrix of rank

1. If θ �= θ̂, the R(θ, t) will be semi-definite, and its rank will
be greater than 1.

Let us perform the eigenvalue decomposition of R(θ, t),
and let λ1(θ, t) ≥ λ2(θ, t) ≥ . . . ≥ λN (θ, t) denote the
N eigenvalues of R(θ, t). Obviously, if R(θ, t) is of rank 1,
λ2(θ, t) = . . . = λN (θ, t) = 0. Therefore, if we form the
following cost function

J(θ, t) =
1∑N

i=2 |λi(θ, t)|
, (9)

the cost function reaches the maximum if θ = θ̂, then the esti-
mated DOA θ̃(t)is calculated as:

θ̃(t) = argmax
θ

J(θ, t). (10)

In practice, in order to overcome the fluctuation of FWSCM
estimation, we modify FWSCM by recursively smoothing it
over time:

R̂(θ, t) = αR̂(θ, t− 1) + (1− α)R(θ, t), (11)

where R̂(θ, t) is the modified FWSCM of time frame t, and
α is the smoothing factor which is usually chosen close to 1.
R(θ, t) is substituted by R̂(θ, t) for eigenvalue decomposition.
By exploiting the recursively smoothing procedure, more reli-
able FWSCM estimation is achieved, which improves perfor-
mance of DOA estimation.
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3.2. Frequency weight calculation

As mentioned before, the frequency weights should have large
values in speech frequency bins and zero values in non-speech
frequency bins. In this subsection, by exploiting the historical
DOA estimates and the correlation of frequency spectra in con-
secutive speech frames, the frequency weights are calculated
based on post-beamforming and a priori SNR estimation.

3.2.1. Post-beamforming

As DOAs are estimated frame by frame continuously, the esti-
mation results of past frames may provide valuable information
to improve the accuracy of the estimation in the current frame.
Supposing we have estimated DOA of speech source correctly
in the last frame, if we perform beamforming on the multichan-
nel signals of the last frame towards the estimated DOA, a sig-
nal in which the speech signal is enhanced and the interference
signals are suppressed will be obtained.

It should be noted that the beamforming is performed “af-
ter” the DOA estimation of the last frame (so we call it post-
beamforming), and only the multichannel signals of the last
frame are utilized. Therefore, even though the historical esti-
mates are used, we don’t make any assumption of the DOA of
the current frame. The role of post-beamforming is to provide
us some “priori” knowledge of what the speech spectrum may
look like in the current frame.

We adopt the simple delay-and-sum(DS) beamformer [9] to
enhance the signal of one frame. The reason for choosing DS
beamformer is that it compromises between the computational
complexity and the capacity of suppressing the interferences. In
the frequency domain, the beamformed signal towards direction
θ is calculated as:

Y B(t, f, θ) =
1

N

N∑
i=1

yi(t, f)e
i2πf(i−1)

sin(θ)fsd
c , (12)

where Y B(t, f, θ) is the beamformed signal, yi(t, f) denotes
the STFT of the ith microphone signal in time frame t and fre-
quency bin f .

Unfortunately, the DOA estimate of the last frame is not
always correct. To reduce the negative effect of beamforming
towards wrong directions, the enhanced signal of last frame is
actually computed as the weighted sum of beamformed signals
towards the last K DOA estimates:

Y E(t−1, f) = 1∑K
i=1 e

−β(i−1)

K∑
i=1

Y B(t−1, f, θi)e−β(i−1),

(13)
where Y E(t − 1, f) is the enhanced signal, θi is the ith DOA

estimate ahead from the current frame, and e−β(i−1) is a fad-
ing weight with β controlling the fading rate. K and β is set
to be 15 and 0.3 respectively here. With this formula, the en-
hanced signal does not depend only on the latest DOA estimate,
although the latest estimate has larger impact than other esti-
mates.

In the first K frames with limited historical DOA estimates,
the enhanced signal is replaced by the signal received by the first
microphone in the current frame. The enhanced signal will be
used for the a priori SNR estimation in the following step.

3.2.2. A priori SNR based frequency weight

The interference signals are suppressed after post-
beamforming. With the enhanced signal, we estimate the
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Figure 1: Spectrograms of clean speech (a) and noisy speech
(b), calculated frequency weight (c) in time-frequency domain.
Noisy environment: 8dB SIR F16 cockpit noise + 15dB SNR
white Gaussian noise + T60 250ms reverberation

a priori SNR, which can be viewed as an indicator of speech
presence in a certain frequency bin. Then the frequency
weights are calculated by computing the correlation between
the estimated SNR and the spectrum of current frame.

Here the a priori SNR is estimated based on selective
cepstro-temporal smoothing, which has been presented in our
group’s previous work [10]. We measure the estimated a priori
SNR by dB. The frequency weight w(t, f) is further defined by
a recursively smoothing procedure:

w(t, f) =ρw(t− 1, f)

+ (1− ρ){(L[y1(t, f)] + ζ) ·max[ξ(t− 1, f), 0]}p
(14)

where ξ(t− 1, f) is the a priori SNR of Y E(t− 1, f), ρ is the
smoothing factor, p is a factor controlling the impact of high
SNR frequency bins on the DOA cost function, L[y1(t, f)] is
the log-spectral amplitude of first microphone signal. A variable
ζ is added to L[y1(t, f)] to make the log-spectral amplitudes
non-negative. A frequency bin is considered as non-speech bin
if SNR < 0dB, and the weight for this bin is set to be 0,
which is expressed by max[ξ(t−1, f), 0]. In this paper, we set
ρ = 0.3, p = 2, and ζ = 15.

Fig.1 shows an example of the calculated frequency weight
and its corresponding spectrograms of the clean speech and
noisy speech. It can be observed that under the noisy condition,
the calculated frequency weight can roughly reflect the spec-
trogram of the speech signal, and the effect of the interference
signal has been almost totally removed.

4. Experiment
In order to evaluate the performance of the proposed algorith-
m, we conduct experiments on the synthetic data. Two well-
known conventional algorithms, the SRP-PHAT [5] and broad-
band MUSIC algorithm[3], are used for comparison.

2897



4.1. Experimental setup

A rectangular room with size 6×4×3meters is modeled in the
experiment. We employ a ULA which consists of eight omni-
directional microphones, the spacing between adjacent micro-
phones is 10 cm. The microphones at two ends of ULA are at
(2.5,2.0,1.5), (3.2,2.0,1.5) respectively. Although we don’t limit
the number of interferences in the proposed algorithm, in order
to facilitate the test, we assume that only one interference exists
in the experiment. The speech source and interference are both
located on a horizontal plane (x,y,1.5) with a distance of 2m to
the center of the microphone array. We consider that the DOAs
of speech source ranges from −90◦ to 90◦ with a step size of
20◦. For the interference, we consider three possible DOAs,
which are 20◦, 40◦ and 60◦ respectively. As the ULA is sym-
metric to the normal line, there is no need to consider the case
that the interference appears on the opposite side.

The speech source is with 16-bit resolution, sampling rate
of 8KHz and durations of 10 seconds. We utilize three differ-
ent types of noises (white Gaussian noise, car interior noise and
F16 cockpit noise) taken from Noisex92 [11] as the interfer-
ence signals. The room impulse responses from source to mi-
crophones are modeled by the image-source method [12], and a
Matlab code implementation [13] is used to generate the signal-
s received by different microphones. In the experiment, we set
the reverberant time T60 of the room to be 250ms. The received
speech signal and interference signal are separately generated,
and mixed together after being scaled to control the signal-to-
interference ratio (SIR).

Algorithms are evaluated under different SIR conditions.
The SIR changes from -10dB to 20dB, with a step size of 5dB.
We also add 15dB uncorrelated white Gaussian noise to each
microphone, to simulate a more adverse environment. For all
evaluated algorithms, the analysis frame size is set to be 256
samples with 50% overlap. 50 Monte Carlo simulations are
conducted for each scenario (DOAs of the speech and interfer-
ence, SIR).

4.2. Experimental results

We use two frame level metrics, denoted as Accuracy and Root
Mean Square Error (RMSE), to evaluate the performance of d-
ifferent algorithms. The estimation is considered to be correct

if |θ̃(t)− θ̂| < Th, where Th is a threshold which is commonly
set to be 5◦. Then Accuracy and RMSE are defined as:

Accuracy =
Nc

N
, (15)

RMSE =

√√√√ 1

N

N∑
i=1

(θ̃(i)− θ̂)2, (16)

where Nc is the number of speech frames which have the cor-
rect estimation, N is the number of total speech frames. We
only consider speech frames for evaluation, which are labeled
manually in advance using clean speech. We should point out
that these labels are never used by any of the three algorithms.

The results of all the evaluated algorithms under differen-
t interferences are compared in Fig.2. The performance under
white Gaussian noise is illustrated in Fig.2(a) and Fig.2(b). It
can be seen clearly that proposed algorithm yields the highest
estimation accuracy in all SIRs considered, and gets the low-
est RMSE in almost all scenarios. Similar results can be ob-
served in the F16 cockpit noise and car interior noise cases,
as shown in Fig.2(c) ∼ Fig.2(f). By comparing between the
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Figure 2: Estimation performance of different algorithms under
different SIRs and interference signals. Accuracy and RMSE
with interference as: white Gaussian noise (a)(b), F16 cockpit
noise (c)(d), car interior noise (e)(f). The error tolerance for
Accuracy is 5◦

performances under different interferences, we can see that al-
l algorithms achieve the performance improvement as the fre-
quency distribution of the interference signal gets narrow from
white Gaussian noise to car interior noise. It’s probably because
the strong interference signal has less probability to effect the
speech frequency bins. Nevertheless, the proposed algorithm
gets the most significant improvement in low SIR condition-
s. From Fig.2(e)(f), it can be seen even under the strong car
interior noise interference, the proposed algorithm performs ex-
tremely robust.

5. Conclusion
In this paper, we present a new DOA estimation method for
human speech in noisy and reverberant environments when the
interferences exist. By exploiting the historical DOA estimates
and the temporal correlation of speech frequency spectra, we
perform post-beamforming to suppress the interference signals
and calculate the frequency weight based on the estimated a pri-
ori SNR and the spectrum of the current frame. Then we intro-
duce a new DOA cost function based on FWSCM which enables
efficient frequency weighting. Experimental results on different
kinds of interferences demonstrate that the proposed algorithm
can achieve higher estimation accuracy and lower RMSE for
human speech than conventional algorithms.
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