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Abstract
Besides the undirected environmental noise, the surrounding in-
terference also brings great challenges to the robust DOA esti-
mation of the speech source. As conventional DOA estimation
methods always assume an undirected noise model, they usu-
ally cannot perform reliably when the strong inference exists.
In this paper, we propose a novel interference robust DOA esti-
mation method, which is based on the “weighted spatial bispec-
trum correlation matrix (WSBCM)”. The WSBCM contains the
spatial correlation information of bispectrum phase difference
(BPD), and a new DOA estimator is further derived based on
the eigenvalue analysis of the WSBCM. By formulating with
WSBCM, the proposed method benefits from the redundant
DOA-related information provided by the BPD. In addition, the
WSBCM enables bispectrum weighting to highlight the pure
speech units in the bispectrum, which further helps to improve
the performance. In order to compute the bispectrum weight-
s, a decision-directed approach is derived. The effectiveness of
the proposed method is demonstrated by experiments conducted
under various kinds of interference-existing scenarios.
Index Terms: direction of arrival estimation, microphone array
signal processing, bispectrum, interference

1. Introduction
The knowledge of the direction of arrival (DOA) of the speech
source is of great interest in various applications including
hands-free communication systems, teleconferencing, automat-
ic camera steering, etc. In these applications, a microphone ar-
ray is commonly deployed, and the DOA can be estimated by
exploiting the spatial diversity of the distributed microphones.

One major concern for the DOA estimation problem is the
environmental noise. The noise may be undirected, or emit-
ted by the surrounding interference. However, almost all con-
ventional methods such as high-resolution spectral estimation
[1,2,3], steered beamformer response power [4,5], and time dif-
ference of arrival (TDOA) estimation [6,7] just assume that the
noise signals received by different microphones are undirected.
As a result, when the strong directional interference exists, due
to the inaccuracy of the noise model, the robustness of these
algorithms cannot be guaranteed.

In our previous work [8], an interference robust DOA esti-
mation method had been presented. We proposed a frequency-
domain DOA estimator which enabled frequency weighting
while avoiding estimating DOAs separately in each band, and
the robustness against the interference was improved by select-
ing only the speech frequency bands using frequency weight-
s. In order to compute the weights, the historical information
of DOA estimates and the temporal correlation of the consec-

utive speech spectra were exploited. Clearly, among the whole
set of frequency bands, only a few of them are the speech ones,
which contain the cues related to the DOA of the speech source.
Then it can be further deduced that, if the interference has a flat
frequency distribution, the DOA cues in the speech frequency
bands will be more likely polluted by the interference, making
the algorithm less robust. This inference has been demonstrated
in the experiments of the previous work by comparing between
the performances under different interferences.

Finding the DOA cues of the speech source is crucial for the
interference robust DOA estimation. For the frequency domain
representation, once the cue in one speech band is polluted by
the interference, it cannot be found elsewhere. In this paper, we
propose a novel method which is formulated in the bispectrum
domain. Compared with the frequency domain formulation, the
proposed method has a theoretical advantage that the DOA cues
are expressed redundantly in the bispectrum, meaning that even
the cue of the speech source is polluted in one bispectrum unit,
it may be re-found in other unpolluted units. This advantage
makes it possible to improve the robustness of the algorithm.
We select the speech units with a set of bispectrum weights,
and integrate the DOA cues in these units into the “WSBCM”.
The WSBCM is a function of a hypothesized DOA, and shows
interesting property only when the hypothesized DOA equals
to the true one. A new DOA estimator is then derived based on
the eigenvalue analysis of the WSBCM. In order to compute the
bispectrum weights, we propose a decision-directed approach.
By conducting experiments under various kinds of interference-
existing conditions, we demonstrate the effectiveness of the pro-
posed method.

2. Signal Model
We consider the problem in an environment with an M-element
uniform linear microphone array (ULA), a speech source and
several interferences. The speech source and interferences are
all in the far field [9] and uncorrelated with each other.

Suppose that the signals are equally attenuated from
sources to each microphone. If we choose the first microphone
as the reference point, the signal received by the mth micro-
phone (m = 1, . . . ,M ) at time k can be expressed as:

ym(k) = sm(k) + vm(k) + nm(k)

= s1(k − τm1) + vm(k) + nm(k), (1)

where sm(k) is the speech signal received by the mth micro-
phone, which is a delayed version of the speech signal received
by the first microphone, and τm1 indicates the time delay. As
only the speech signal which is related to the DOA of the speech
source is of our interest, we ignore the details of the interference



signal received by the microphone, and simply represent it as
vm(k). The nm(k) denotes the additive white Gaussian noise.

The time delay between the first and mth microphone τm1

can be determined according to the array geometry, which is
derived as follows:

τm1 = (m− 1)
sin(θ̂)fsd

c
,m = 1, 2, ...,M, (2)

where c is the speed of sound in the air, fs is the sampling rate,
d is the spacing between two adjacent microphones, and θ̂ is the
true DOA of the speech source to be estimated.

3. Proposed Method
3.1. Bispectrum Phase Difference

The bispectrum is a kind of high order statistics (HOS) of the
signal. A promising property of HOS is that the HOS of the
Gaussian signal is always zero. In fact, several HOS based
DOA estimation methods have been proposed to improve the
robustness against Gaussian noise by utilizing this property
[10,11,12]. However, these methods are generally applied for
narrowband signals. Moreover, they are not capable to deal with
the non-Gaussian directional interferences whose bispectra are
non-zero.

In this subsection, we analyze the bispectra of the signal-
s captured by the ULA in a different way, and show that the
redundancy provided by the “BPD” helps to improve the per-
formance in the interference-existing scenarios.

The bispectrum is a function of two bi-frequency variables
Ω1 and Ω2, and it analyzes the frequency interactions between
the frequency components at Ω1, Ω2 and Ω1 + Ω2. Due to s-
pace limitations, the theoretical basis of the bispectrum is not
introduced here, and the readers can refer to [13][14]. As most
speech signals have asymmetric possibility density functions,
their skewness are non-zero [15]. Thus, it is reasonable to ana-
lyze bispectrum of the speech signal.

Recall the signals received by first and mth microphone.
Following Eq.(1), they can be rewritten as follows:

y1(k) = s1(k) + v1(k) + n1(k)

ym(k) = s1(k − τm1) + vm(k) + nm(k). (3)

Since n1(k) and nm(k) are zero-mean Gaussian, their bis-
pectra are identical to zero. According to the derivation in [14],
and under the assumption that the speech source is uncorrelated
with the interferences, the bispectrum of y1(k) and the cross-
bispectrum between y1(k), ym(k) can be derived as:

By111(Ω1,Ω2) = Bs111(Ω1,Ω2) +Bv111(Ω1,Ω2)

By1m1(Ω1,Ω2) = Bs111(Ω1,Ω2)ejΩ1τm1 +Bv1m1(Ω1,Ω2),
(4)

where Bxabc(Ω1,Ω2) stands for the bispectrum of signal
xa(k),xb(k) and xc(k). We define the BPD as the ratio be-
tween By1m1 and By111 , and substitute τm1 using Eq.(2), then:

Im1(Ω1,Ω2)
def
=

By1m1(Ω1,Ω2)

By111(Ω1,Ω2)

= ejΩ1
(m−1)sin(θ̂)fsd

c (1− εm(Ω1,Ω2)), (5)

where

εm(Ω1,Ω2) =
Bv111 −Bv1m1e−jΩ1τm1

Bs111 +Bv111
. (6)

In Eq.(5), the BPD is expressed as a product of two terms.
For the fixed ULA geometry and sampling rate, the first ter-
m is only related to the DOA of the speech source and the bi-
frequency Ω1, and we call it the “speech DOA cue”. The second
term reflects how much the speech DOA cue is polluted by in-
terferences. In speech-dominated bispectrum units, according
to Eq.(6), the εm(Ω1,Ω2) is close to 0, which makes the BPD
approximates the real speech DOA cue.

One interesting property which can be seen from Eq.(5)
is that, although the BPD is defined in each bispectrum unit
(Ω1,Ω2), actually, the speech DOA cue in BPD is not a func-
tion of the bi-frequency Ω2. In other words, as long as two
bispectrum units have the same Ω1, whatever the values of their
Ω2 are, they have redundant speech DOA cues in the BPD.

As the bispectra of the speech and interferences distribute
differently, in some speech units, the speech DOA cues may
be severely polluted, nevertheless, they can be re-found in oth-
er speech-dominant units with the same Ω1. In the speech-
dominant units, the speech DOA cue can approximated by the
BPD. In contrast, for the frequency domain representation, once
the cue in one speech band is polluted by the interference, it can-
not be found elsewhere. This property of BPD helps to improve
the robustness of the algorithm against the interferences.

3.2. Bispectrum Weights

Since the real DOA cue is close to the BPD only in speech-
dominant bispectrum units, it is better to pick out only these
units for DOA estimation. Here, a set of non-negative weights
are utilized to select these speech units, and the weights are ex-
pected to have large values in pure speech units, and zero values
in the interference ones.

Actually, the bispectrum weight, which can be viewed as an
indicator of how much the speech signal is polluted in one unit,
is analogous to the signal-to-noise ratio (SNR) in the frequency
domain. Therefore, the ideas for SNR estimation can be ex-
ploited to compute the bispectrum weights. In this subsection,
the bispectrum weights are computed by a “decision-directed”
method, which is similar to the decision-directed a priori SNR
estimator proposed by Ephraim and Malah [16].

We use the bispectrum of the first microphone signal
By111(Ω1,Ω2) for the weight calculation. Define the lo-
cal a priori bispectrum signal-to-interference ratio (BSIR)
ξ(Ω1,Ω2) and a posteriori BSIR γ(Ω1,Ω2) of the bispectrum
unit (Ω1,Ω2) as:

ξ(Ω1,Ω2)
def
=
|Bs111(Ω1,Ω2)|2

λv(Ω1,Ω2)
, (7)

γ(Ω1,Ω2)
def
=
|By111(Ω1,Ω2)|2

λv(Ω1,Ω2)
, (8)

where λv(Ω1,Ω2)
def
= E{|Bv111(Ω1,Ω2)|2} is the estimation

of interference bispectrum power, which can be obtained and
updated during periods of silence. Assuming the speech and
interferences are uncorrelated, it is clear that:

ξ(Ω1,Ω2) = γ(Ω1,Ω2)− 1. (9)

Following Eq.(7) and Eq.(9), the a priori BSIR ξ(Ω1,Ω2) is
estimated as:

ξ̂t(Ω1,Ω2) =α
|Bt−1
s111

(Ω1,Ω2)|2

λv(Ω1,Ω2)

+ (1− α)P [γt(Ω1,Ω2)− 1]. (10)
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Figure 1: Example of the calculated bispectrum weights. Noisy
environment: car interior noise, SIR=5dB and T60=250ms

where P [·] denotes half-wave rectification, and the superscript
(·)t indicates the time frame t. α ∈ [0, 1] is a smoothing factor,
which is set to be 0.98. The |Bt−1

s111
(Ω1,Ω2)|2 in the right side

of Eq.(10) is unknown, and it can be approximated as:

|Bt−1
s111 |

2 = (|Bt−1
s111 |

2/|Bt−1
y111 |

2) ∗ |Bt−1
y111 |

2

= [|Bt−1
s111 |

2/(|Bt−1
s111 |

2 + λv)] ∗ |Bt−1
y111 |

2

≈ [ξ̂t−1/(ξ̂t−1 + 1)] ∗ |Bt−1
y111 |

2. (11)

Substituting Eq.(11) into Eq.(10), we have:

ξ̂t =αγt−1 ξ̂t−1

ξ̂t−1 + 1
+ (1− α)P [γt − 1]. (12)

In Eq.(11)(12), “(Ω1,Ω2)” is omitted for simplicity.
From the definition of ξ(Ω1,Ω2) in Eq.(7), it can be seen

that when the unit is dominated by the interference, ξ(Ω1,Ω2)
will be less than 1. We define the bispectrum weight as:

w(Ω1,Ω2)
def
= |Bty111(Ω1,Ω2)|{[max(ξ̂t(Ω1,Ω2), 1)]p − 1},

(13)

where p is a factor controlling the importance of high B-
SIR units, which is set to be 0.8 here. By multiplying with
|Bty111(Ω1,Ω2)|, the units belonging to neither the speech nor
interference are excluded. Obviously the bispectrum weights
will be equal to zero in the interference-dominated units.

Fig.1 shows an example of the calculated bispectrum
weights (plus a small positive number and transform to the log-
scale) and the log-scale amplitude of the bispectra correspond-
ing to the clean speech, interference and noisy speech in one
frame, respectively. It can be observed the effect of the interfer-
ence has been almost totally removed.

3.3. Weighted Spatial Bispectrum Correlation Matrix

The speech-dominant bispectrum units can be chosen as units
with large bispectrum weights. For each unit (Ω1,Ω2), BPDs
of multiple microphones are available. In order to express the

procedure of “selecting speech units from BPDs of multiple mi-
crophones, and integrating the selected speech cues for DOA
estimation”, into a compact framework, a matrix called “WS-
BCM” is formulated. The WSBCM reflects the spatial correla-
tions between the phase aligned BPDs for a hypothesized DOA,
and shows an interesting property only when the hypothesized
DOA equals to the true one.

We define the BPD vector in the unit (Ω1,Ω2) as:

I(Ω1,Ω2)
def
= [I11(Ω1,Ω2), . . . , IM1(Ω1,Ω2)]T . (14)

Inspired by the expression of speech DOA cue in Eq.(5), a BPD
compensation vector for a hypothesized DOA θ is defined as:

C(θ,Ω1)
def
= [1, e−jΩ1

sin(θ)fsd
c , . . . , e−jΩ1

(M−1)sin(θ)fsd
c ]T .

(15)
Then we compensate the BPDs using C(θ,Ω1) as follows:

IC(θ,Ω1,Ω2)
def
= I(Ω1,Ω2) ◦C(θ,Ω1), (16)

where IC(θ,Ω1,Ω2) is the phase-compensated BPD vector,
and the symbol “◦” stands for the element-wise product. Once
θ is equal to θ̂, according to Eq.(5)(14)(15)(16),

IC(θ,Ω1,Ω2) = Γ + E(θ,Ω1,Ω2), (17)

where Γ = [1, 1, . . . , 1]T , which indicates that BPDs are phase
aligned, and E(θ,Ω1,Ω2) is an error term which equals to
−[ε1(Ω1,Ω2) . . . εm(Ω1,Ω2)]T ◦C(θ,Ω1).

With the bispectrum weights computed using Eq.(13), we
define the WSBCM which contains the spatial correlation in-
formation of the phase aligned BPDs for θ as follows:

R(θ)
def
=

∑
(Ω1,Ω2)

w(Ω1,Ω2)[IC(θ,Ω1,Ω2)](IC(θ,Ω1,Ω2))H .

(18)

We assume that in the speech units, the error term in Eq.(17)
can be ignored. Then, once the hypothesized DOA θ is equal to
θ̂, according to Eq.(17)(18),

R(θ) =
∑

(Ω1,Ω2)∈ΩS

w(Ω1,Ω2)ΓΓH

= η ·

 1 . . . 1
...

. . .
...

1 . . . 1

 , (19)

where ΩS denotes the set of speech units, and η =∑
(Ω1,Ω2)∈ΩS

w(Ω1,Ω2) is a constant in a certain frame given

w(Ω1,Ω2). In this case, R(θ) is a matrix of rank 1. If θ 6= θ̂,
R(θ) will be semi-definite, and its rank will be greater than 1.

3.4. DOA estimator

In this subsection, we define a new DOA estimator based on the
eigenvalue analysis of the WSBCM. Let us perform the eigen-
value decomposition of R(θ) and let λ1(θ) ≥ λ2(θ) ≥ . . . ≥
λN (θ) denote the N eigenvalues of R(θ). If the hypothesized
DOA θ equals to θ̂, R(θ) is of rank 1, λ2(θ) = . . . = λN (θ) =
0. Therefore, if we form the following cost function

J(θ)
def
=

1∑N
i=2 |λi(θ)|

, (20)

the cost function reaches the maximum if θ = θ̂. Thus the
estimated DOA θ̃ is calculated as:

θ̃
def
= argmax

θ
J(θ). (21)



4. Experiment
We conduct experiments on the synthetic data to evaluate the
performance of the proposed algorithm. The SRP-PHAT [5]
and broadband MUSIC algorithm[3], and our previously pro-
posed interference robust method [8] are used for comparison.

4.1. Experimental setup and evaluation

A rectangular room with size 6 × 4 × 3 meters is modeled.
We employ a ULA consisting of eight omni-directional micro-
phones, with the inner spacing as 10 cm. The microphones at
two ends of ULA are at (2.5,2.0,1.5), (3.2,2.0,1.5) respectively.
Although we don’t limit the number of interferences, in order
to facilitate the test, we assume that only one interference ex-
ists in each tested scenario. The speech source and interference
are both located on a horizontal plane (x,y,1.5) with a distance
of 2m to the center of the microphone array. In different sce-
narios, the speech DOAs range from −90◦ to 90◦ with a step
of 20◦, and three possible DOAs of the interference, which are
20◦, 40◦ and 60◦, are considered. As the ULA is symmetric to
the normal line, it is enough to only consider the scenarios that
the interference appears in one side.

The room impulse response from the source to each micro-
phone is modeled by image-source method [17]. We set the
reverberant time T60 to be 250ms. The speech source is of 10
seconds, with 8KHz sampling rate. We utilize three different
types of noises, white Gaussian noise (WGN), car interior noise
(CAR) and F16 cockpit noise (F16), taken from Noisex92 [18]
as the interference signals. The received speech signal and inter-
ference signal are separately generated, and mixed together af-
ter being scaled to control the signal-to-interference ratio (SIR).
The SIR changes from -10dB to 20dB, with a step of 5dB. For
all evaluated algorithms, the frame size is set to be 256 samples
with 50% overlap. 50 Monte Carlo simulations are conducted
for each scenario (interference type, SIR).

4.2. Experimental results

Two frame level metrics, denoted as Accuracy and Root Mean
Square Error (RMSE), are used to evaluate the performance of
different algorithms. The estimated DOA is considered to be
correct if |θ̃ − θ̂| < 5◦. In the experiment, we only consid-
er the speech frames for evaluation, and the speech frames are
labeled manually in advance on the clean speech. It should be
pointed out that these labels are never used by any of the four
algorithms.

The performances of all evaluated algorithms under differ-
ent interferences are illustrated in Fig.2. It can be seen that the
proposed method can achieve the highest accuracy and the low-
est RMSE in almost all conditions considered. Even though in
some scenarios, the proposed method can not perform as reli-
ably as the method in [8], the performance degradation is rela-
tively small compared with the improvement in other scenarios.

Among the three kinds of interferences, the WGN has the
broadest frequency distribution, while the CAR has the narrow-
est one. When changing the interference from the CAR to the
WGN, the degradation of robustness is still observed for the
proposed method. This is understandable for CAR and F16 cas-
es. Because the bispectrum reflects the interaction between dif-
ferent frequencies, broad frequency distribution always results
in broad bispectrum distribution, which eventually makes more
speech units polluted. But it seems surprising for the WGN
case, as the bispectrum of WGN is zero in theory. This may be
explained as follows. In fact, its bispectrum is not exactly zero
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Figure 2: Estimation performance of different algorithms under
different SIRs and interference signals. Accuracy and RMSE
with interference as: WGN (a)(b), F16 (c)(d), CAR (e)(f).

practically, and in low SIR conditions, the residual error may
be also large. Moreover, as the all-zeros distribution is the most
flat one, the bispectrum distribution of the residual error will
be the broadest compared with other interferences. Therefore,
despite that the theoretical bispectrum of WGN is zero, in low
SIR WGN conditions, the proposed algorithm can not perform
so well as in other interference conditions. However, although
all algorithms suffer from performance degradation, by exploit-
ing the redundancy of DOA cues expressed in WSBCM, the
proposed method degrades least. In the WGN conditions, when
the SIR is higher than -5dB, the proposed method can achieve
the accuracy higher than 70%.

5. Conclusion
In this paper, a new interference robust DOA estimation method
for speech source is proposed. The method is based on the “WS-
BCM”. The WSBCM contains the spatial correlation informa-
tion of BPDs, and the redundant speech DOA cues expressed in
BPDs helps to improve the robustness against the interference.
In addition, the WSBCM enables bispectrum weighting to se-
lect bispectrum units from BPDs in which speech DOA cues
are less polluted. In order to compute the bispectrum weights,
an “decision directed” method is then proposed. We also derive
a new DOA estimator based on the eigenvalue analysis of the
WSBCM. The effectiveness of the proposed method is demon-
strated by experiments under various kinds of interferences in
different SIRs.
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