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Abstract

For music signal processing, compared with the strategy which
models each short-time frame independently, when the long-
time features are considered, the time-series characteristics of
the music signal can be better presented. As a typical kind of
long-time modeling strategy, the identification vector (i-vector)
uses statistical modeling to model the audio signal in the seg-
ment level. It can better capture the important elements of the
music signal, and these important elements may benefit to the
classification of music signal. In this paper, the i-vector based
statistical feature for music genre classification is explored. In
addition to learn enough important elements for music signal,
a new multilingual i-vector feature is proposed based on the
multilingual model. The experimental results show that the
multilingual i-vector based models can achieve better classifica-
tion performances than conventional short-time modeling based
methods.

Index Terms: i-vector, multilingual, music genre classification,
statistical feature

1. Introduction

Music is one of the most popular type of audio data on the In-
ternet, and the amount of the on-line music data is huge. There-
fore, it is increasingly needed to manage the music data in an
effective way. One way is to automatically divide the music da-
ta into different classes, which is called the “music genre clas-
sification” [1].

The music genre classification is solved in the pattern
recognition framework, and the main concentrations of con-
ventional methods are in two aspects: feature extraction, which
aims at finding more discriminative features, and classifier de-
sign, which focuses on designing better models to capture the
discrimination of features belonging to different classes, and to
generalize to unknown observations.

Feature extraction is a key factor to the performance of the
classification system, and various techniques for feature extrac-
tion have been developed. Some works propose to combine d-
ifferent features to obtain a more comprehensive presentation
of the audio than each individual feature. For instance, in [2],
the mel-frequency cepstral coefficienttMFCC), rhythmic con-
tent features are jointly utilized to improve the classification
performance. Some other studies transform feature into new s-
paces such that the transformed features are more discriminative
in the new spaces. For example, in [3], the locality preserving
non-negative tensor factorization and sparse representations are
exploited. In addition, [4] suggests to use the long-term modu-
lation spectral analysis of spectral features as well as the MFCC
features.

The above mentioned methods generally perform on audio
features extracted separately in each frame. However, as mu-
sic data is sequential, these methods ignore the long-time time
series information that is also important to music genre classifi-
cation. Although [4] use a very long time widow about 340ms,
it still cannot represent the music signal from the track level,
and the feature in [4] have a very high dimension which is not
conducive for the following modeling.

As we know that there are many important elements for mu-
sic signal, such as loudness, rhythm, musical instrument, and
so on. It is difficult to better capture so much elements in a
music clip, and we use i-vector model in this paper to automat-
ic learn these important elements for music signal. The GM-
M(Gaussian mixture model) in i-vector model can be seen as
the combination of many Gaussian models, and each Gaussian
model represents one element of music. The i-vector feature has
been widely used in speaker recognition [5-8]. In this paper, the
frame level features are used to train a i-vector extractor to get
the segment level representation, and the GMM based universal
Background model (GMM-UBM) is utilized to train the i-vector
extractor. In addition, a multilingual i-vector model which com-
bine multilingual model and i-vector model is further proposed
to learn more about the elements using the unlabeled music data
on the Internet (out-of-domain data). It has been recognized in
automatic speech recognition (ASR) that the multilingual mod-
el built on the out-of-domain resource [9-11], can improve the
performance of the target language. Experimental results show
that the proposed model can improve the performance.

Although the i-vector has been widely used for speaker
recognition tasks, there still lack effective methods to adopt it
to music genre classification. To the best of our knowledge, this
paper first uses i-vector for music genre classification. Further
more, the multilingual i-vector can make use of large unlabeled
music data on the Internet to improve the performance, and this
has a great significance.

2. Data and Baseline Features

In this paper we choose the ISMIR database which has been
widely used for music genre classification [4, 12-14]. The de-
tails of the database are described as Table 1, and the training
set and testing set have been defined by the database. Six music
genres are contained in the database which are classical, elec-
tronic, jazz/blue, metal/punk, rock/pop, and world respectively.
The time lengths of different tracks are not fixed, and the total
duration of all tacks is about 100 hours. Before feature extrac-
tion, each audio file has been converted into a 22050Hz, 16 bit,
and single channel WAV file.

The Mel-Frequency Cepstral Coefficient (MFCC) is ob-



tained by averaging spectrogram values over mel-frequency. It o .
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(including the energy coefficient) using a window of 25ms with
10ms overlap. In order to express the dynamic information, the
first and second order derivatives are also computed. Finally,
the feature is represented as 39-dimension MFCC.

Table 1. Database Description

genre tracks(train/test) | time duration(hours)
Classical 320/320 17.87/16.71
Electronic 115/114 10.48/9.97
Jazz/Blue 26/26 1.66/1.80
Metal/Punk | 45/45 3.14/2.95
Rock/Pop 101/102 6.34/6.79
World 122/122 11.92/10.86
total 729/729 51.41/49.08

But for music long time representation is beneficial, and
MFCC will lose information when using long time window. So
we need to explore the high level feature to better represent the
music data. In this paper, the MFCC feature is used as the low-
level feature to train high level feature which is called i-vector
feature. In addition, the MFCC feature is also used as the base-
line feature.

For comparing with the long-time representation (i-vector
feature), the scattering feature is also explored. The scatter-
ing feature is proved success for music genre classification [15]
[11]. It is an extension of MFCC, and it can recover the lost in-
formation by averaging spectrogram when using long time win-
dow. It is computed by scattering the signal information along
multiple paths, with a cascade of wavelet modulus operators
implemented in a deep convolution network (CNN).

In our work, we calculate first-order and second-order time
scattering coefficients using a window of 370 ms with half over-
lap. The parameter for scattering transform are just the same as
our previous work in [11]. In this paper, the scattering feature
is also used as the baseline feature and the low-level feature.

3. I-Vector based Statistical Modeling
3.1. Framework

In this paper, the i-vector based statistical modeling method is
proposed to represent music data and classify music genres. It
contains three stages:In the first stage, we calculate low-level
frame feature(scattering feature or MFCC feature) for music da-
ta as section 2.In the second stage, the low-level feature is used
to get the high-level segment feature, we propose two high-level
feature: the i-vector feature and multilingual i-vector feature,
which will be described in detail in following two subsection-
s.In the last stage, the high-level segment feature is used as the
input of classification system to train the classification system
and test the performance.

3.2. The I-vector Feature

The extraction of i-vector feature is shown in Fig .1. By us-
ing GMM-UBM, the original low-level feature is mapped to a
high dimensional space to give a better representation of the
audio track. Then, with total variability model(TVM) and Lin-
ear discriminant analysis(LDA), we reduce the dimension of the
feature and finally obtain the i-vector feature.

The GMM-UBM is a kind of method to find the high di-
mensional space. GMM uses the probability estimation method

Figure 1: The extract of i-vector feature .

to describe the distribution of audio features. For a feature vec-
tor x, the probability density function is:
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where ) is the parameter set of GMM, C'is the number of Gaus-
sian mixture, D is the dimension of x, w; is the weight of each
Gaussian mixture. We have ZZC:I w; = 1. p; is the mean val-
ue, and 3, is the covariance matrix. Each Gaussian component
pi(x) can be represent as:
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The GMM is trained by maximum likelihood estimation,
and the local optimal solution is obtained by the expectation
maximization (EM) algorithm. The posterior probability of xj
is:
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During the training of GMM, the zero order, first order and
second order Baum-welch statistics (BWS) of the training fea-
ture {zx|k = 1,2, ..., N} are computed by:
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Then the GMM’s parameter set A is updated by following equa-
tions:

E9
P = — 8
wi =4 (8)
E}
B = g0 ©9)
E}
wi = 7 — pipi (10)

Next, all BWS are concatenated to form a GMM-UBM super
vector m = [m{,..,m],..,my]T Next, all BWS are concate-

nated to form a GMM-UBM super vector:
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where, m; = 5, and 1 <4 < N.

The dimension of GMM-UBM super vector is very high,
and it makes the model tend to fall into the local optimal solu-
tion and increases the difficulty to train a stable model. There-
fore, the dimension of the super vector is needed to be reduced.



We first use the TVM [16] to reduce the dimension. By applying
factor analysis on the super-vector space, a vector m can be lin-
early projected into a low dimensional space as: m = mo+71T'w,
where my is the mean value of m, T is a low-rank rectangular
matrix, and w is the i-vector feature. Further details about the
training of TVM can be seen in [16, 17].

LDA [16, 18, 19] is also widely used for dimension reduc-
tion. As the training of TVM is unsupervised, it doesn’t contain
the difference information of each music type. Therefore after
the training of TVM, we use LDA to reduce the dimension in
the supervised way. More information on LDA can refer to [16].

3.3. The Multilingual I-vector Feature

The extraction of multilingual i-vector feature is almost the
same as that of i-vector feature with the difference only in the
training of GMM-UBM. In the multilingual i-vector based mod-
el, we train the GMM-UBM using large out-of-domain music
data an ISMIR database. It is well known that more data helps
to train a more robust system. However, in our ISMIR database,
the amount of music data is not enough especially for some gen-
res. In the multilingual i-vector, we find a large amount of un-
labeled music data from the Internet, and train the GMM-UBM
in an unsupervised manner.

Fig. 2 shows the procedure of using unlabeled out-of-
domain music data to train the GMM-UBM model. The out-
of-domain music data is randomly download from Baidu Music
website [20], which contains 4550 music tracks with total du-
ration about 304 hours. The language of the those music tracks
includes Chinese, English, Japanese, French, etc. The training
of GMM-UBM and TVM is just the same as the previous sub-
section. After that we get the multilingual i-vector feature, and
then the LDA is used to reduce the dimension.

out-of-domian  isSmir frame ismir frame

frame featur . feature feature
GMM-UBM VM oA -
model ivector feature

Figure 2: The extract of multilingual i-vector feature .

4. Experiment and Analysis
4.1. The Baseline Systems

DNN based systems are built as the baselines. The frame-level
feature (MFCC feature or scattering feature) is utilized as DNN
input. The DNN has one input layer, one output layer, and sev-
eral hidden layers which will be elaborated in the following
paragraphs. Within the hidden layers, the input of each node
is computed as the linear combination of the outputs from the
previous layer. Each hidden node transforms its input with a
sigmoid activation function to achieve non-linearity. Then, a
soft-max output function is used at the output layer to compute
the posterior probability. At last, the mean square error cost
function is used to train the DNN.

The toolkit for DNN training is the Karel’s DNN in Kaldi
Toolkit [21]. The learning rate is 8 * 107°, and the training
epochs for training the DNN is 100. In the testing stage, the
label of each frame is first recognized and then majority voting
is used to get the track labels.

multilingual

We build two baseline systems using different features. The
first baseline system is based on the MFCC feature, and the
second baseline system is based on the scattering feature. The
structure of DNN and the result are list in Table 2, which also
lists the performance of other existing approaches. In Table 2,
“39” and “525” are the number of nodes in the input layer and
“6” is the number of nodes in the output layer.

Table 2. The results of baseline systems

| baseline models(layers)
DNN1(39-128-6)

describe accuracy |

MFCC+DNN  43.21%
DNNI1(39-512-6) MFCC+DNN  42.80%
DNN1(39-512-512-6) MFCC+DNN  42.94%
DNN1(39-128-512-128-6) MFCC+DNN  43.35%
DNN2(525-1024-6) Scatt+DNN 85.32%
DNN2(525-1024-1024-6)  Scatt+DNN 84.35%
hol2008 [22] existing work  83.5%

lee2009 [4] existing work  86.8%
sig2014 [13] existing work  73.4%

4.2. The Experiment of I-Vector based Statistical Modeling
Method

The procedure of computing the i-vector representation has
been described in the previous sections. The training tool we
used to get the i-vector is Kaldi Toolkit [21]. As the i-vector
representation is the track-level feature, the amount of feature is
not enough to train a DNN. So with the i-vector representation,
we use linear SVM as the classifier. The result is summarized in
Table 3. In Table 3, “ubm512” means that the number of Gaus-
sian mixture in GMM-UBM is 512, “TVM200” means that the
TVM model reduce the feature dimension into 200, “LDAS50”
means that we use LDA to reduce the feature dimension into 50,
and “multi” means using multilingual based i-vector represen-
tation.

Table 3. The results of different models

[ model name | feature | accuracy |
ubm512+TVM200 Scatt 28.15%
ubm512+TVM400 Scatt 43.89%
ubm512+TVM200 MFCC | 86.97%
ubm512+TVM400 MFECC | 87.38%
ubm512+TVM400+LDAS0 MFCC | 88.48%
ubm512+TVM400+LDA200 MFCC | 88.48%
ubm512+TVM400+LDA300 MFECC | 88.34%
multi+ubm512+TVM400+LDAS0 MFECC | 89.99%
multi+ubm512+TVM400+LDA200 | MFCC | 90.12%

From Table 3, we can see that the classification system us-
ing scattering feature has a poor performance. That because
scattering feature has a high dimension (525 dimension) which
is not appropriate for GMM training. It is obvious that LDA can
improve the classification performance, and the multilingual i-
vector representation perform further better than others.

4.3. Experiment Analysis

In this subsection, we first analysis the effect of parameters in
GMM-UBM and TVM. Fig. 3(a) is the accuracy of differen-
t number of Gaussian mixtures in GMM-UBM using different
models. From the Fig. 3(a), we can see that the number of



Gaussian mixture from 512 to 2048 has little effect on the ex-
perimental results. Fig. 3(b) is the accuracy of different re-
duced dimension using TVM model. Fig. 3 (c) is the accuracy
of different reduced dimension using LDA. From the Fig. 3(b)
and Fig. 3(c), we can see that “TVM+LDA” performs better
than only using “TVM”, which shows that LDA makes the fea-
ture more appropriate for classification. The results also show
that the multilingual i-vector based model is better than i-vector
based model, and indicate that using the out-of-domain database
for unsupervised training can improve the classification perfor-
mance.

(a) different number of gauss mixtures
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Figure 3: In the Fig, “ubm” means GMM-UBM model is
trained only use ISMIR database. “multi+ubm” means GMM- (1]
UBM model is trained on ISMIR database and large out-of-
domain database from the Internet. “ubm512” means the gauss
mixture of GMM-UBM is 512. “TVM300” means reduce the [12]
feature dimension into 300 using TVM. The detail describe of
different models are in section 3. [13]
5. Conclusion
[14]
This paper investigates i-vector based statistical modeling for
music genre classification. The i-vector transforms the frame [15]
feature to statistical segment level representation. Then we
combine the i-vector model with the multilingual model to get [16]
multilingual i-vector feature. This method enables us to use the
unlabeled data on the Internet, and experimental results show
the superiority of the proposed models. As we have a large [17]
amount of unlabeled data on the Internet, and if we can make
use of these data to improve our system, it will be a significant
improvement. [18]
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