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Noise Robust Direction of Arrival Estimation for
Speech Source With Weighted Bispectrum

Spatial Correlation Matrix
Wei Xue, Wenju Liu, and Shan Liang

Abstract—One big challenge to the robust direction of arrival
(DOA) estimation for the speech source is the environmental noise.
In practical conditions, the noise can be undirected or emitted from
a pointed source. In order to improve the reliability of DOA es-
timation in various adverse noisy conditions, we propose a novel
DOA estimation method in this paper, and what lies in the core in
the method is the “Weighted Bispectrum Spatial Correlation Ma-
trix (WBSCM).” The bispectrum is a kind of higher order statistics
(HOS) of a signal, and the WBSCM reflects the spatial correlation
of the bispectrum phase differences (BPD) between different mi-
crophones. As the HOS of the Gaussian signal is theoretically zero,
by formulating in the bispectrum domain, the proposed method
has an inherent advantage against the Gaussian noise. Moreover,
the BPD, which is embedded in the WBSCM, contains the redun-
dant information related to the DOA of the speech source. This re-
dundancy helps to improve the robustness in non-Gaussian noise
conditions, especially for the directional interference scenarios. In
addition, the WBSCM enables bispectrum weighting to select the
speech units in the bispectrum, in order to highlight the effect of
these units in the DOA estimation. Similar to the signal-to-noise
estimation, a decision-directed method is proposed to compute the
bispectrum weights. Finally, a new DOA estimator is proposed,
which is based on the eigenvalue analysis of the WBSCM. We con-
duct experiments under various kinds of noisy environments, and
the experimental results demonstrate the effectiveness of proposed
method.
Index Terms—Direction of arrival (DOA) estimation, micro-

phone array signal processing, high order statistics, bispectrum.

I. INTRODUCTION

A MAJOR functionality of the microphone array is to esti-
mate the direction of arrival (DOA) of the sound source.

In many speech processing systems, such as the hands-free
devices, video conference systems, and interactive robots, the
knowledge of DOA of the speech source is of great interest
[1]–[4]. In practical scenarios, the noise which exists in the
surrounding environment always makes the DOA estimation a
much complicated problem.
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Over the past few decades, many kinds of DOA estimation
methods for the speech source have been developed. In some
fields of the narrow-band signal processing, such as radar
and underwater sonar, estimating the DOAs of narrow-band
sources has been a crucial problem for a long history, and some
high-resolution spectral methods have been proposed, e.g., the
MUSIC algorithm [5], the Capon's minimum variance (MV)
algorithm [6]. High-resolution spectral methods for the broad-
band speech are generally developed from these narrow-band
approaches. These methods usually decompose the broadband
signal into several narrow-band signals [7], [8], or utilize a “fo-
cusing matrix” to transform the signal of all narrow-bands into
one reference narrow band [9], [10]. A more straightforward
approach is proposed in [11], where a time-domain formulation
is derived. Another category of DOA estimation methods are
the steering response power (SRP) based methods [12]–[14],
which utilize a beamformer to steer over all potential direc-
tions, then determine the DOA of speech source by searching
for the direction with the largest SRP. Compared with above
two categories of methods, the time delay estimation (TDE)
based methods have received much more attention. TDE based
methods are two-step approaches, which estimate the time
delays between multiple microphone pairs firstly, and then
compute the DOA according to the time delays and the array
geometry [15], [16]. For pairwise TDE, the most widely used
methods are the generalized cross-correlation (GCC) family
of methods [17]. However, they can only be used pairwise,
and often suffer from performance degradation in highly noisy
conditions [18]. Some authors propose to exploit the spectral
properties of the speech signal for TDE, for example, the
harmonic structure of reverberated speech is considered in
[19], and the features of the excitation source of voiced speech
are utilized in [20]. Several other methods suggest employing
more microphones to improve the performance, e.g., the spatial
linear prediction (SLP) method and the multichannel cross-cor-
relation coefficient (MCCC) algorithm [21]–[23].
Although many approaches have been proposed, most of

them assume that the additive noises at different microphones
are white Gaussian signals and uncorrelated pairwise. Un-
fortunately, the assumption does not always hold in practical
scenarios, as the noise at one individual microphone is not
necessarily white Gaussian, and the noises at different micro-
phones may not be spatially uncorrelated. When directional
interferences e.g., computer fans and air conditioners exist, the
noises at different microphones are spatially correlated. Due
to the model inaccuracy, traditional methods tend to simply
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estimate the DOA of the stronger signal [24], thus they can not
distinguish between a speaker and a directional interference.
Since the speech signal is non-stationary, even if the average
signal to noise ratio (SNR) is higher than 0 dB, the speech
may not be stronger than the interference in all time frames.
This makes the DOA estimator can not stick to the DOA of the
speech source in interference-existing scenarios.
Several methods have been developed to cope with the in-

terference. In [25], the authors first estimate the DOAs of mul-
tiple sound sources, then use Gaussian mixture models (GMMs)
to identify whether the beamformed signal from each candi-
date DOA is speech. As more than one frame is needed for
identification, and the identification is performed after pre-es-
timating the multiple DOAs, this approach can not be used for
on-line frame-level estimation. A different approach is proposed
in [24], where the pairwise time difference of arrival (TDOA)
is estimated by finding the peak location of the time-domain
“Acoustic Transfer Function's Ratio,” which is computed in the
frequency domain by exploiting the speech signal's quasi-sta-
tionary and interference signal's stationary. However, the ex-
tension from the pairwise case to the multichannel case for es-
timating the DOA of the far field source seems not straight-
forward. In [26], a interference robust DOA estimator which
is applicable for the multichannel case is presented. The DOA
estimator is formulated in the frequency domain, and it adopts
frequency weighting to select only speech frequency bands so
as to improve the robustness against the interference. Clearly,
among the whole set of frequency bands, only a few of them
are speech ones, which contain the cues related to the DOA of
speech source. Therefore, for the frequency domain formulated
approaches, such as [24] and [26], if the noise signal has a flat
frequency distribution, the DOA cues in speech frequency bands
will be more likely polluted by the noise, making the DOA es-
timation less robust.
In this paper, we propose a method which formulates the

DOA estimation problem in the “bispectrum” domain. Analo-
gous to the second order spectrum—power spectrum, the bis-
pectrum is the third order spectrum of a signal, which is a kind of
“higher-order statistics” (HOS). In fact, there exists a promising
property that the HOS of the Gaussian noise is theoretically
zero. Therefore, several HOS based methods have been devel-
oped aiming to improve the performance in Gaussian noise con-
ditions [27]–[31]. However, these methods are generally pro-
posed for narrow-band signals, and it is always much time-con-
suming to decompose the speech signal into narrow-band sig-
nals, and then apply these approaches. More importantly, these
methods are not capable to deal with non-Gaussian directional
interferences whose HOS are non-zero.
Here, we formulate the algorithm in the bispectrum domain

from a novel perspective, andmake the resulting DOA estimator
robust to both the Gaussian and non-Gaussian noises, and can
be straightforwardly applied for broadband speech and multi-
channel cases. Compared with the frequency domain formu-
lation, besides the immunity to Gaussian noise, the proposed
method exploits another theoretical property that the speech
DOA cues are expressed redundantly in the “bispectrum phase
difference (BPD)” between two microphone signals. This re-
dundancy has two advantages. Firstly, it means that even the
DOA cue of the speech source is polluted in one bispectrum

unit, it may be re-found in other unpolluted units. By contrast,
for the frequency domain representation, once the cue in one
speech band is polluted by the noise, it cannot be found else-
where. This advantage makes it possible to improve the DOA
estimation performance, especially in non-Gaussian directional
noises. Secondly, as the speech DOA cues are repeatedly ex-
pressed, we can check whether the candidate DOA matches the
real one by utilizing more than only one set of DOA cues, thus
it can be viewed that the redundancy brings more observations
for DOA estimation.
The core of the new DOA estimation method is the

“Weighted Spatial Bispectrum Correlation Matrix (WBSCM).”
The WBSCM contains the spatial correlation information of
BPDs between different microphones. It provides a compact
framework to exploit both the immunity of bispectrum against
Gaussian noise and the redundancy of speech DOA cues ex-
pressed in the BPD for robust DOA estimation. In addition, the
WBSCM enables bispectrum weighting to select the speech
units in the bispectrum, in order to highlight the effect of speech
bispectrum units in the DOA estimation. Similar to the SNR
estimation, a decision-directed method is proposed to compute
the bispectrum weights. The WBSCM is also a function of a
hypothesized DOA, and has an interesting property only when
the hypothesized DOA equals to the true one. A new DOA
estimator is then proposed, which is based on the eigenvalue
analysis of the WBSCM. We conduct experiments under var-
ious kinds of noisy environments, and the experimental results
demonstrate the effectiveness of proposed method.
This work is an extension of our previous work in [32], [33].

The outline of this work is as follows. Section II presents the
signal model and some assumptions. In Section III we present
some basic concepts on the bispectrum and analyze the BPD be-
tween a pair of microphone signals. The details of the WBSCM
including the calculation of the bispectrum weights and the for-
mulation of WBSCM will be presented in Section IV. Then
in Section V, we introduce a new DOA estimator. The exper-
imental results are given in Section VI. Finally, we conclude
this paper in Section VII.

II. SIGNAL MODEL

As shown in Fig. 1, suppose that there exists one speech
source and several interferences in the far field, and the inter-
ferences are all uncorrelated with the speech source. We use
a microphone array consisting of M elements to collect the
sound signals. For each sound source, the signal propagates
from the source to microphone as a plane wave, and the sound
level falls as a function of the distance between the source and
microphone [34].
Let us choose the first microphone as the reference point, then

the signal received by the th microphone at
time can be simply expressed as:

(1)

where is the unattenuated speech
signal received by the th microphone, which is a delayed ver-
sion of the signal at the location of the speech source ,
with as the propagation time from the speech source to the
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Fig. 1. Illustration of the signal model. is the unattenuated speech signal
received by the th microphone, and is the attenuation factor. Other nota-
tions are described inside the figure.

first microphone, and as the relative delay between the th
and first microphone. denotes the attenuation factor which
ranges in . As only the speech signal which is related to the
DOA of speech source is of our interest, we ignore the details
of the interference signal received by the th microphone, and
simply represent the interference signal as . In addition,
the stands for the additive zero-mean white Gaussian
noise.
Obviously, , then , and

. Consequently, can be rewritten as:

(2)

The time delay is closely related to the geometry of the mi-
crophone array and real speech DOA . If the array geometry
is fixed, depends only on , then we use to denote
the dependency. Themathematical formulation of can be
well defined by geometrical computations. For example, a typ-
ical type of microphone array is the “uniform linear microphone
array (ULA),” in which the array elements are equispaced, and
in such case, we have:

(3)

where is the speed of sound in the air, is the sampling rate,
and is the spacing between two adjacent microphones.

III. PHASE DIFFERENCE IN THE BISPECTRUM DOMAIN

A. Definitions and Properties of Bispectrum
In signal processing, one common way to describe the statis-

tical properties of stochastic processes is to use the measures of
second-order statistics, which generally include the auto-corre-
lation, cross-correlation, and the corresponding power spectrum
and cross-power spectrum. While the second-order statistics
are widely used in various fields of signal processing, these
measures only provide partial descriptions of the statistical

properties of stochastic processes [35]. Therefore, the princi-
ples of correlations and power spectra have been extended to
orders greater than two, and the concepts of HOS of stochastic
processes are then introduced [36]–[38]. HOS generally in-
clude the higher-order moment, higher-order cumulant and the
corresponding higher-order spectrum of stochastic processes.
The “bispectrum,” which is defined in the order of three, is the
simplest higher-order spectrum. In the literature, for stationary
stochastic signals, analog to the definition of power spectrum,
the bispectrum is defined as the 2-D Discrete Fourier Trans-
form (DFT) of the third-order cumulant of these stochastic
signals [39].
Now let us consider the bispectrum1 of three zero-mean

stationary stochastic signals, which are denoted as
and . For zero-mean processes, the third-order cumulant
is identical to the third-order moment, then the bispectrum

of is defined with the following
expression:

(4)

where and are angular bi-frequency variables,
is the imaginary unit, and is the third-order mo-
ment of , which is defined depending on two in-
dependent lags and :

(5)

where “ ” is the expectation operator.
The bispectrum can also be defined from another perspective

in terms of the signals' DFT. Let and denote
the DFTs of and , receptively. The bispectrum

is defined as:

(6)

It can be derived that the definitions in (4) and (6) are
equivalent [39].
By definition, the bispectrum is a function of two bi-fre-

quency variables and , and it analyzes the frequency
interactions between the frequency components at and

where one frequency equals to the sum of the other
two. In [35], [39], [40], the properties of bispectrum (and other
HOS) have been discussed in great detail. Here, we simply
present two properties which will be useful for the analysis in
the following paper.
1) Property 1: If the probability density functions (PDFs)

of the zero-mean random processes and are
all symmetrically distributed, then the third-order cumulant

equals to zero. According to (4), the bispectrum
also equals to zero.

The zero-mean Gaussian process is a typical kind of process
with symmetric PDF, then the bispectrum of zero-mean

1In some literature, the authors call the definition in (4) as “cross-bispectrum,”
and the term “bispectrum” is used only when are identical to
each other. In this paper, we view the “cross-bispectrum” as the generalized
definition of “bispectrum,” and for the sake of simplicity, we generally call

defined in (4) as “bispectrum” unless mentioned.
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Gaussian processes is always zero. For speech signals, ac-
cording to [41], most speech signals have asymmetric pos-
sibility density functions, so it is reasonable to analyze their
bispectra. As the PDFs of the non-Gaussian interferences are
unknown, their bispectra are possibly zero.
2) Property 2: The cumulant of the mixture of two statis-

tically independent random processes equals to the sum of the
cumulants of the individual random processes. According to (4),
this property also holds for the bispectrum of zero-mean random
processes.
This property is similar to that of power spectrum for sta-

tistically independent random processes. With this property,
the analysis of mixed signal in the bispectrum domain can be
simplified into analyzing the bispectra of component signals
separately.

B. BPD Between a Microphone Pair

In this subsection, we analyze a pair of microphone signals
in the bispectrum domain. Recall the signals received by first
and th microphone. Following (2), they are rewritten here as
follows:

(7)

Since and are zero-meanGaussian, according to
“Property 1,” their bispectra are identical to zero. However, the
bispectra of interference signals and may be non-
zero. Under the assumption that the interferences are uncorre-
lated with speech source, according to “Property 2,” the bispec-
trum of and the cross-bispectrum between
can be derived as:

(8)

where stands for the bispectrum of signal
, and .

As , according to (5), similar to the
derivation in [42], we have:

(9)

where stands for the cumulant of zero-mean
signal , and . According to the property of
2-D DFT and the definition of bispectrum in (4), the following
relationship holds for and :

(10)

In each bispectrum unit , we define the BPD between
and as follows:

(11)

Substituting (8) and (10) into (11), the BPD can be expressed
as:

(12)

where

(13)

In the right side of (13), “ ” is omitted for simplicity.
The BPD in (12) is a complex number, which is expressed

as a product of two complex terms. in the first term is
determined by the DOA of speech source, sampling rate and
array geometry. Then, for fixed sampling rate and array geom-
etry, if ignoring the effect of attenuation factors, is
only related to the DOA of the speech source and the bi-fre-
quency , and we call it the “speech DOA cue.” The second
term is related to the bispectra of the non-Gaussian
interference signals. It indicates how much the speech DOA cue
is affected by non-Gaussian interferences. Obviously, in pure
speech units, , the BPD equals to the speech
DOA cue.
From (8) and (10), the speech bispectrum components in

and differ only up to a scale
factor and phase shift. Therefore, these speech components
have the same distributions in the bispectrum amplitude. As the
interferences are also directional, even though the relationships
between interference components are not derived here, we
similarly deduce that each interference component has the
same distribution in and . As
a result, if a bispectrum unit of is
speech-dominated, the same unit in must be
also speech-dominated, and vice versa.
In speech-dominated bispectrum units, we assume that the in-

terference bispectra and , which
are complex numbers, become close to 0. Then, both the nu-
merator and denominator of in (13) approximate

, and becomes a complex number
close to 1. Then, in such units, the BPD approximates the real
speech DOA cue.
One interesting property which can be seen from (12) is that,

although the BPD is defined in each bispectrum unit ,
actually, the speech DOA cue in BPD is not a function of the
bi-frequency . In other words, as long as two bispectrum units
have the same , whatever the values of their are, they have
redundant speech DOA cues in the BPD. The redundancy of
speech DOA cues in the BPD is illustrated in Fig. 2.
For a pair of signals in which one is a delayed version of the

other, it is more conventional to compute the phase difference
in the frequency domain. However, if the signals are polluted by
noises, the bispectrum phase difference has several advantages
over the frequency phase difference. One advantage is that, in
theory, the effect of zero-mean Gaussian noise has been re-
moved in the bispectrum domain. Another advantage is that the
redundancy of speech DOA cue in the BPD helps to improve the
robustness against interferences. As the bispectra of the speech
and interferences distribute differently, in some speech units,
the speech DOA cues may be severely polluted, nevertheless,
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Fig. 2. Illustration of the redundancy of speech DOA cues in the BPD between
two clean signals with one as the delayed version of the other. (a) The angle
spectrum of speech DOA cues in the BPD. The angle of the speech DOA cues
in the BPD for different 's: (b) , (c) , (d) .

Fig. 3. The procedure of computing BPD using measured data
of and .

they can be re-found in other speech-dominated units with the
same . In contrast, for the frequency domain representation,
once the cue in one speech band is polluted by the interference,
it cannot be found elsewhere. Therefore, this property of BPD
helps to improve the performance of the algorithm in interfer-
ence-existing-scenarios. Furthermore, as the speech DOA cues
are repeatedly expressed, we can check whether the candidate
DOA matches the real one by utilizing more than only one set
of DOA cues, thus it can be viewed that the redundancy brings
more observations for DOA estimation.

C. Numerical Computation of BPD From Measured Data
One problem in practice is how to estimate the BPD of a

microphone pair given a finite set of measurements. Following
the definition of BPD in (11), the procedure of computing
BPD between using the measured data is shown
in the Fig. 3. In the procedure, the key issue is the “bispec-
trum estimation,” in which the bispectra and

are estimated using finite observations of
. It should be noted that is a special

case of when . Therefore, only the
method of computing is presented here.
Conventional bispectrum estimation approaches include “di-

rect” and “indirect” methods [39], which can be seen as ap-
proximations of the two different definitions of bispectrum (6)

Fig. 4. The flowchart of computing the WBSCM.

and (4) in Section III-A. As the DFT of the signal can be effi-
ciently estimated by the Fast Fourier Transform (FFT), we adopt
the direct method for bispectrum estimation. The implementa-
tion details of the direct method can be found in [39]. In this
method, in order to reduce the variance of bispectrum estima-
tion, the “segment-average” strategy is commonly used. In this
strategy, the given set of measurements are firstly segmented
into small overlapping segments, then the estimated bispectra
in these overlapping segments are averaged to obtain a final bis-
pectrum estimation.
In our problem, the DOA estimation is expected to be con-

ducted in the frame level, then the data length of one frame
may be not long enough for segmentation. Only a few seg-
ments or even one segment can be segmented from one frame of
data. In such case, in addition to the “segment-average” strategy,
we also smooth over the bispectrum estimation results of con-
secutive frames to reduce the estimation variance. Assuming
we have obtained the bispectrum estimation of

in frame using the direct method. Then the
final bispectrum estimation is updated as:

(14)

where the superscript indicates the time frame , and
stands for the estimated value. is a smoothing factor.
Although the larger value of helps to reduce the estimation
variance, smaller value makes the estimation can more effec-
tively track the update of bispectrum. In this paper, as a com-
promise, the is empirically set to be 0.7. With the bispectrum
estimation and , the BPD can be
computed according to (11).

IV. WEIGHTED BISPECTRUM SPATIAL CORRELATION MATRIX

When multiple microphones are available, the BPDs between
multiple microphones and the reference one can be computed,
and it is possible to utilize multiple BPDs to improve the DOA
estimation performance. The problem is how to utilize these
BPDs in a proper way. In this section, we integrate the BPDs of
multiple microphones into a compact mathematical expression
called “WBSCM,” which will be used by the DOA estimator
in the next section. The flowchart of computing WBSCM using
the raw data of microphone array is shown in Fig. 4. It includes
three main parts. The first part involves computing the BPDs
between multiple microphones and the reference one, and it has
been introduced in Section III-C. The second part involves com-
puting the bispectrum weights using the bispectrum of the first
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microphone. In the third part, the computed BPDs and bispec-
trum weights are used to formulate the WBSCM for a hypoth-
esized DOA. In the following, we will begin with the method
for bispectrumweights computation, then the formulation of the
WBSCM will be introduced.

A. Bispectrum Weights
According to (11), the real DOA cue is close to BPD only

in speech-dominated bispectrum units, therefore, it is better to
pick out only these units for DOA estimation. One common
way to achieve this is to utilize a set of non-negative bispectrum
weights, and these weights are expected to have large values in
speech bispectrum units, and zero values in non-speech ones.
Actually, the bispectrum weight, which can be viewed as an

indicator of how much the speech signal is polluted in one bis-
pectrum unit, is analogous to the concept of SNR in the fre-
quency domain. Therefore, the ideas for SNR estimation can
be exploited to compute the bispectrum weights. Here, a “de-
cision-directed” method for computing bispectrum weights is
proposed, which is similar to the decision-directed a priori SNR
estimator proposed by Ephraim and Malah [43].
As is analyzed in Section III-B, both the speech and inter-

ference have the same bispectrum amplitude distributions in
and , therefore, it is the same

to use either or for bispectrum
weight calculation. Here, the is chosen. Similar
to the definition of SNR, we define the local a priori bispectrum
signal-to-interference ratio (BSIR) and a posteriori
BSIR of the bispectrum unit as:

(15)

(16)

where is the estimation
of interference bispectrum power, which is initialized and up-
dated during the period of silence. We assume that the speech
is not active in the initial short-time period (assumed to be 0.3s
long in this paper), then can be initialized as the av-
erage value of the bispectrum power computed within the initial
frames:

(17)

where is the number of initial frames. The update of
will be introduced later in this section in (26).

Assuming the speech and interferences are uncorrelated, it is
clear that:

(18)

Following (15) and (18), the a priori BSIR is esti-
mated as:

(19)

where denotes half-wave rectification operator, which en-
sures the positiveness of the estimated a priori BSIR, and it is
defined by:

(20)

The is a smoothing factor, which is similar with that used in
the a priori SNR estimation [43]. For a priori SNR estimation,
typical values of the smoothing factor are in the range of [0.92,
0.98], and larger values often lead to more noise reduction and
speech distortion [44], [45]. Here, as the speech distortion is
beyond our concern, and the aim is to find reliable bispectrum
units for DOA estimation, the smoothing factor is set to be 0.98.
The a priori BSIR estimator in (19) is a “decision-directed”

estimator, since the is updated based on the pre-
vious estimation of the speech bispectrum . The

in the right side of (19) is unknown, it can be
approximated as:

(21)

Substituting (21) into (19), we have:

(22)

In (21) and (22), the symbol “ ” is omitted for
simplicity.
We should point out that, although the estimated a priori

BSIR reflects how much the speech signal is pol-
luted by the interference in one bispectrum unit, not all units
with high a priori BSIRs are the target units to be selected. In
a unit where both the speech and interference distribute little
or are absent, even though the bispectrum powers of the speech
and interference are both small, the relative value between them
may be large, thus the a priori BSIR may be also high. As we
aim to select “speech-dominated” bispectrum units, it is better
to find out the speech units in the first step, and then pick out the
speech-dominated ones.
Following (21), with the estimated BSIR , it is

straightforward to estimate the speech bispectrum power in cur-
rent frame, i.e.:

(23)

The estimations of the speech bispectrum power in different
units provide a description of the speech bispectrum distribu-
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tion. As will be large in speech units, and
small in non-speech ones, we can use to in-
dicate the presence of speech in a unit, and select the speech
units as the ones with large .
Then speech-dominated units are further picked out from

these selected speech units. According to the definition of
in (15), it can be seen that if a unit is dominated by

speech, will be larger than 1. Here, a threshold
is applied to for selecting speech-dominated units.
On one hand, we intend to select more speech-dominated units
for DOA estimation, while on the other hand, these selected
units are expected to be as clean as possible. Obviously, the
larger is, the less polluted bispectrum units are selected, but
the amount of selected units gets fewer. Therefore, there is a
trade-off with respect to the choice of . In high SNR condi-
tions, as the BSIRs in speech-dominated units are also high, a
higher value of can be adopted to improve the performance,
however, when the noise level increases, should be set close
to 1. In our experiment, considering different noisy conditions,
we empirically choose the value of to be 1.5. Selecting the
speech-dominated units can be expressed as follows:

(24)

We define the bispectrum weight as the combination of the
above two steps for selecting speech-dominated bispectrum
units:

(25)

Obviously the bispectrum weights will be equal to zero in non-
speech-dominated units.
Fig. 5 shows an example of the calculated bispectrumweights

(plus a small positive number and transform to the log-scale),
the log-scale estimated a priori BSIR and the log-scale ampli-
tude of the bispectra corresponding to the noisy speech, clean
speech and interference in one frame, respectively. It can be ob-
served that although the speech bispectrum units are less visible
in the noisy speech bispectrum, these units are effectively recov-
ered in the bispectrum weights, and the effect of the interference
has been almost totally removed.
The in (24) can also be used for a speech activity

detection (VAD) in the bispectrum domain. We assume that the
current frame is a noise one if for all bispectrum
units. Then the can be updated as:

(26)

where is a smoothing factor. We assume that in the bispec-
trum domain, the noise signal is more stationary than the speech.
In this paper, we use a low update rate of the estimated interfer-
ence bispectrum power, and is empirically chosen to be 0.95.

B. Formulation of WBSCM
In each bispectrum unit , the BPDs between mul-

tiple microphones and the reference one can be computed. Ac-
tually, we can see that the expressions of speech DOA cues
for different microphones, which are defined in (13), are much

Fig. 5. Example of the calculated bispectrum weights in one frame. The noise
environment: car interior noise, dB and ms. The log-
scale bispectrum amplitude of (a) the noisy speech signal, (b) the clean speech
signal, and (c) the interference signal. The log-scale estimated a priori BSIR is
shown in (d), and the log-scale bispectrum weights is shown in (e).

similar to the expressions of complex signals received by dif-
ferent microphones in the classical narrow-band MUSIC algo-
rithm. Therefore, one may solve the DOA estimation problem
by narrowband methods such as MUSIC in each , and
finally combine these estimations using the computed bispec-
trum weights. However, it is obviously time-consuming. In this
section, we integrate these BPDs into a compact matrix called
“WBSCM,” which reflects the spatial correlations between the
phase aligned BPDs for a hypothesized DOA. It enables bis-
pectrum weighting to highlight the effects of speech-dominated
bispectrum units so as to further improve the robustness against
the noise, and shows an interesting property only when the hy-
pothesized DOA equals to the true one.
In the bispectrum unit , we define a BPD vector

which consists of the BPDs between all microphones and the
reference one as:

(27)

The is a complex-value vector. Obviously, an ex-
plicit theoretical expression of the BPD vector can be derived
according to (12):

(28)

It has been discussed in Section III-B that in pure speech
units, for equals to 1, and the BPD equals
to the real DOA cue. In practice, due to the noise and bispec-
trum estimation error, this ideal case rarely happens, therefore,
we express the BPD vector as the sum of the ideal one and an
noise vector:

(29)

where is the noise vector with the th element
written as: .
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Suppose the true DOA of speech source is known exactly,
then we can use a “BPD compensation vector” to totally com-
pensate the speech DOA cues in the BPD vector. Inspired by the
expression of speech DOA cue in (11), the BPD compensation
vector for a hypothesized DOA is defined as:

(30)

Then we compensate the BPDs using the defined as
follows:

(31)

where is the phase-compensated BPD
vector, and the symbol “ ” stands for the element-wise multi-
plication operator. Substituting (29) and (30) into (31), we have:

(32)

where is the phase-compensated noise vector.
With the bispectrum weights computed using (25), we define

the WBSCM which contains the spatial correlation infor-
mation of the phase aligned BPDs for as follows:

(33)

The is only a function of the hypothesized DOA , and it
can be viewed as a weighted sum of the correlation matrices of
the multiple phase-aligned BPDs in different bispectrum units.
As the is a complex-valued vector, the

is an hermitian matrix.
We assume that in speech-dominated bispectrum units, the

phase-compensated noise vector noise vector can
be ignored. Furthermore, the bispectrum weight is
expected be zero in non-speech-dominated units, then substi-
tuting (32) into (33), the WBSCM can be rewritten as:

(34)
where denotes the set of speech-dominated units in the bis-
pectrum which are selected by the bispectrum weights. Once
matches , according to (32), becomes an real vector
with all elements equal to 1, i.e., ,
indicating the speech DOA cues are phased aligned in BPDs. In
this case is no longer related to , then

...
. . .

... (35)

where is a real constant
given in a certain frame. Therefore, we note that,
ideally, if becomes a matrix with all elements
equal to a real constant. Otherwise, it is just an ordinary hermi-
tian matrix.
The numerical computation of WBSCM can be per-

formed by following the definition in (33). In practice,
let us use the symbol to donate the value of
“ ” com-
puted in the time frame t, then the expectation operator can be
implemented by recursively smoothing over time:

(36)

where is the WBSCM finally computed in the t-th
frame, and is a smoothing factor. The plays a
role similar with the in (14). Since in general, the speech
signal is much more stationary in spatial domain than in time
domain, can be chosen much more close to 1 computed with
. A larger value of helps to reduce the estimation fluctu-

ation of WBSCM, however, too large reduces the update
speed of WBSCM. We can not avoid the cases when WBSCM
contains more bispectrum spatial correlation information of the
interference than the speech, which lead to wrong estimations,
especially in highly noisy conditions. Then too large makes
the algorithm can not refind the speech source rapidly in such
cases. In this paper, as a compromise between the performances
in different conditions, the is empirically set to be 0.98.

V. DOA ESTIMATOR

Although in theory, the WBSCM will be a matrix with all
elements equal to a real constant if , in reality, as the noise
vector will not be exactly zero, this ideal case rarely happens.
Therefore, we need to find measurements to indicate how much
the WBSCM approximates the ideal case for a given .
In this section, we propose a DOA estimator based on the

eigenvalue analysis of the WBSCM. It is clear that if all the
elements in theWBSCM are equal, the rank of WBSCMwill be
1. Otherwise, the WBSCM is an ordinary hermitian matrix, and
it will be full-rank. Let's perform eigenvalue decomposition of

and let denote the eigenvalues of ,
which are complex numbers, with their absolute values sorted
in a decreasing order, i.e., .
Obviously, if is of rank 1, .
Therefore, if we form the following cost function

(37)

the cost function reaches the maximum if . Then the esti-
mated DOA is calculated as:

(38)

VI. EXPERIMENT

In this section, in order to evaluate the performance of the pro-
posed algorithm and other comparison algorithms, we conduct
experiments in both simulated and real room environments.
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A. Experimental Setup

1) Simulated Room Environment: In the simulated room en-
vironment, the sound sources and the microphone array are as-
sumed to be located in a rectangular reverberant room with di-
mensions: cm, cm, and

cm . We use the image-source method [46] to
simulate the reverberant environment, and a Matlab code im-
plementation2 of this method is utilized for generating the room
impulse responses (RIRs) from sound sources to microphones.
We employ a ULA consisting of two to six omni-directional

microphones to capture the signals from sound sources, and the
spacing between two adjacent microphones is 10 cm. The mi-
crophone array is located at the geometric center of the rect-
angular room, with all elements in the horizontal plane, and
the array orientation parallel to the long edge of the horizontal
plane. For the speech and interference sources, it is set that all
sound sources are situated on a horizontal plane ( , 150 cm)
with distance 190 cm to the center of the microphone array, and
the acoustic signals emitted from these sources are sampled with
8 kHz sampling rate and 16-bit resolution. In all simulated sit-
uations, the reverberation time of the room is set to be
250 ms.
2) Real Room Environment: The Multichannel Impulse Re-

sponse Database (MIRD)3, which contains real RIRs measured
in the speech & acoustic lab at the Bar-Ilan University (BIU)
[47], is exploited to generate the multichannel signals in real
room conditions. The room size of the BIU speech & acoustic
lab is 600 cm 600 cm 240 cm, and an eight-element micro-
phone array is utilized to capture the sounds. All measurements
in the database are sampled with 48 kHz sampling rate and
24-bit resolution. Different reverberation times, microphone
spacings, and source-array distances are configured, therefore
several subsets are included in the database. For more details
of different configurations the readers can refer to [47]. In
our experiment, we choose a moderately reverberant room
environment with as 360 ms. The spacing between two
adjacent microphones is 8 cm, thus a ULA is adopted. The
sound sources are placed at a distance of 200 cm to the center
of the microphone array, and the DOAs are from to 90
with step size as 15 .
3) Speech and Interference Source Signals: Amale speech of

30 seconds is used as the speech source.We utilize four different
types of noises (white Gaussian noise, car interior noise, F16
cockpit noise and speech babble noise) drawn from Noisex92
[48] as interference signals. All source signals are sampled with
8 kHz. The spectrograms of the speech and interferences are
shown in Figs. 6 and 7, respectively.

B. Evaluated Algorithms

Three other methods capable of multiple microphone DOA
estimation are used for comparison. These methods include the
well-known SRP-PHAT method which is originally introduced
by J. DiBiase [12], the broadband MUSIC algorithm proposed
by J. P. Dmochowski and J. Benesty, et al. [11], and the interfer-
ence robust DOA estimation method in [26]. In the SRP-PHAT

2The code can be found at: http://www.eric-lehmann.com/ism_code.html
3The MIRD can be downloaded at: http://www.ind.rwth-aachen.de/en/

research/tools-downloads/multichannel-impulse-response-database/

Fig. 6. (a) Spectrogram and (b) time-domain waveform of pure speech signal.

Fig. 7. Spectrograms of different interference signals: (a) car interior noise,
(b) F16 cockpit noise, (c) white Gaussian noise, and (d) speech babble noise.

and broadband MUSIC algorithm, the cross-spectrum between
two microphone signals, which is defined as

(39)

need to be estimated, where denotes the DFT of the re-
ceived signal of the th microphone. Similar to (36), the estima-
tion is performed by recursively smoothing over the previous
estimation:

(40)
where is a smoothing factor.
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For all evaluated algorithms, the analysis frame size is set to
be 512 samples with 50% overlap. The DOA cost functions are
computed on a 5 grid, then sinc-interpolation is performed on
each cost function to achieve the 1 resolution.

C. Performance Criteria
All algorithms estimate the DOA in the frame-level. Two

frame level metrics, denoted as accuracy and root mean square
error (RMSE), are used to evaluate the performance of different
algorithms. We consider the estimation result of one frame as
correct if the absolute value of the estimation error does not ex-
ceed a threshold, i.e., , where the threshold
is set to be 5 here. Then accuracy and RMSE are defined as:

% (41)

(42)

where is the number of speech frames which have the correct
estimation, N is the number of total speech frames.We only con-
sider the speech frames for evaluation, and the speech frames
are labeled manually in advance on the clean speech signal. It
should be pointed out that these labels are never used by any of
the algorithms for evaluation.

D. Performance in Simulated Room Environments
1) Spatially White Gaussian Noise Conditions: The addi-

tive spatially white Gaussian noise condition is the most widely
considered condition in traditional DOA estimation algorithms.
Therefore, we first test the estimation performance in this sce-
nario. For sake of completeness, we examine different situations
where the DOA of speech source ranges from to 90 with
a step size of 20 . At each DOA, the RIRs from the speech
source to different microphones are simulated, and the speech
signals received by microphones are generated by convolving
the speech signal with these RIRs. Then, the white Gaussian
noise is generated at each microphone independently, and added
to the received speech signal after being scaled to control the
SNR. Therefore, for each SNR, we have 7 groups of simulated
signals corresponding to 7 different speech DOAs.
The algorithms are first evaluated under different SNRs. The

SNR changes from dB to 20 dB, with the step as 5 dB. In
each SNR and simulated speech DOA condition, different al-
gorithms are utilized to estimate the speech DOAs in the frame-
level. Then for each algorithm and tested SNR, we utilize all the
estimation results corresponding to 7 different simulated DOA
scenarios to evaluate the overall performance.
Fig. 8 depicts the comparison results under different SNRs

in spatially white Gaussian noise conditions. In Fig. 8(a), these
algorithms can achieve similar accuracy in high SNR situa-
tions, but if the SNR drops below 5 dB, we can clearly ob-
serve the robustness of the proposed algorithm. Even when the

dB, the accuracy of proposed method is still higher
than 80%. Furthermore, from Fig. 8(b), it can be seen that in
almost all SNRs considered, the proposed algorithm yields the
lowest RMSE. As the proposed method is based on the HOS,
in terms of the immunity of HOS against the Gaussian noise,
the robustness improvement in these set of testing conditions
seems explicable. In spite of this, the improvement may also

Fig. 8. (a) Estimation accuracy and (b) RMSE in spatially white Gaussian noise
under different SNRs in the simulated room environment. Six microphones are
used.

benefit from the redundancy provided by the BPD. Theoreti-
cally, the HOS of Gaussian noise is zero, however in practice,
the bispectrum residual of Gaussian noise still exists. Although
in the bispectrum domain, the effect of Gaussian noise has been
much reduced, the residual still has a negative impact on the per-
formance. In the proposed algorithm, utilizing the redundancy
in BPD over one bi-frequency can be regarded as using more
observed data for DOA estimation, therefore, the negative im-
pact caused by bispectrum residual of Gaussian noise is further
eliminated.
Then we investigate the performance of the evaluated algo-

rithms as a function of the number of microphones. In this set
of experiments, we fix the SNR to be 10 dB, and change the
number of microphones from 2 to 6. Then for each algorithm,
again, the estimation results for different DOA scenarios are
combined together to achieve the overall performance evalu-
ation. It can be seen from Fig. 9 that the performance of all
algorithms generally improves as the number of microphones
increases, indicating that the spatial redundancy provided by
more microphones helps to improve the robustness. Neverthe-
less, compared with other methods, the proposed method can
maintain high performance when fewer microphones are used.
2) Directional Interference Conditions: The performance of

different algorithms in interference-existing scenarios is tested
in this subsection.We evaluate the estimation results in different
signal-to-interference ratios (SIRs) and types of interferences
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Fig. 9. (a) Estimation accuracy and (b) RMSE as a function of number of mi-
crophones in spatially white Gaussian noise in the simulated room environment.
The SNR is 10 dB.

(car interior noise, F16 cockpit noise, white Gaussian noise, and
speech babble noise). In each SIR and type of interference, dif-
ferent combinations of the speech DOA and interference DOA
are considered, and the estimation results of all these considered
scenarios are combined to achieve an overall evaluation. Same
with the testing in spatially white Gaussian noise conditions,
the speech DOA changes from to 90 with a step size
of 20 . For the interference, we simulate three different con-
ditions, in which the interference DOAs are , and
0 respectively. As the ULA is symmetric to the normal line,
there is no need to consider the case that the interference ap-
pears on the opposite side. The received speech signal and in-
terference signal are separately generated by the image-source
method, then mixed together after being scaled to control the
SIR. In all simulations of this subsection, six microphones are
used.
The simulation results in directional car interior noise con-

ditions are sketched in Fig. 10. We can observe that the pro-
posed method is comparable with the method in [26] in high
SIR scenarios on the estimation accuracy, while it is less ro-
bust than the method in [26] when the SIR is lower than dB.
Even so, its accuracy is still higher than 80% when the SIR is
10 dB, and much better than that of the SRP-PHAT and broad-

band MUSIC algorithm. Moreover, the proposed method can
achieve the lowest RMSE in almost all SIRs evaluated.

Fig. 10. (a) Estimation accuracy and (b) RMSE under different SIRs using car
interior noise as the interference signal in the simulated room environment. Six
microphones are used.

The superiority of the proposed method over other compar-
ison methods is more clearly shown in Figs. 11 and 12, where
the F16 cockpit noise and white Gaussian noise are taken as
interference signals. As we can see in Fig. 7, compared with
the car interior noise, the F16 cockpit noise and white Gaussian
noise have much broader frequency distributions. Especially,
for the white Gaussian noise, it has the broadest frequency dis-
tribution with all bands having equal energy statistically. In the
earlier part of this paper, we have discussed that if the interfer-
ence signal has a flat frequency distribution, in the frequency
domain, more speech bands will be polluted, making the DOA
estimation problem more complicated. This is demonstrated by
the observation that the performance of comparison methods
generally degrades when the interference signal changes from
the car interior noise to the white Gaussian noise, shown from
Figs. 10 to 12. However, we can see that the proposed method
degrades least. In the low SIR conditions, the proposed method
exhibits much better performance than other methods.
As are illustrated in Figs. 11 and 12, the SRP-PHAT and

broadband MUSIC algorithm almost totally break down when
the SIR is lower than dB. Even the SIR is higher than 0dB,
generally, the performance of both methods is still not satisfac-
tory. This is understandable. As are introduced in [12] and [11],
the phase transform (PHAT) is adopted for computing the cor-
relation functions between two signals in both methods. In the
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Fig. 11. (a) Estimation accuracy and (b) RMSE under different SIRs using F16
cockpit noise as the interference signal in the simulated room environment. Six
microphones are used.

frequency domain, this procedure discards the amplitude of the
cross-spectrum in each frequency, which makes all frequency
bins are treated with equal significance in the DOA cost func-
tion. As the speech signal occupies only a few frequency bins,
when interference has a flat frequency distribution, most fre-
quency bins are dominated by the interference rather than the
speech. As a result, even though the noise level is lower than the
speech, the DOA estimator may finally direct its global peak to-
wards the noise source direction. The method in [26] improves
the performance in low SIR conditions, by selecting the speech
frequency bands for DOA estimation. Nevertheless, the pro-
posed method, which utilizes the redundancy in BPDs to im-
prove the robustness against the interference, produces the best
results.
On the other hand, we notice that although the proposed

method can work more robustly than other methods, it still
suffers from performance degradation when the frequency
distribution of interference gets broader, as are shown from
Figs. 10 to 12. It is not surprising if comparing between the
car interior noise case and F16 cockpit noise case. According
to (6), the bispectrum reflects the interaction between different
frequencies, then broad frequency distribution always results
in broad bispectrum distribution, which eventually makes more
speech bispectrum units polluted. However, the performance
in white Gaussian noise cases is worse than that in the other

Fig. 12. (a) Estimation accuracy and (b) RMSE under different SIRs using
white Gaussian noise as the interference signal in the simulated room environ-
ment. Six microphones are used.

two types of interference cases, this fact seems inconsistent
with the theory that the HOS of white Gaussian noise is zero.
It may be explained as follows. In practice, the bispectrum
of white Gaussian noise is not exactly zero, and in low SIR
conditions, the residual error in each bispectrum unit becomes
also large. Moreover, as the theoretical “all-zeros” distribution
is the most flat one, the bispectrum distribution of the residual
error will be the broadest. Therefore, despite of the theoretical
advantage of HOS over Gaussian noise, when the SIR is low,
more speech units get affected than other interference cases,
leading to less robust results compared with other types of
interferences cases.
In the last set of experiments, the performance of different

methods is evaluated in directional speech babble noises, and
the results are shown in Fig. 13. As are illustrated in Figs. 7 and
6, compared with the other types of interference signals, the
speech babble noise poses additional difficulties to the high per-
formance DOA estimation, since its frequency distribution co-
incides much with that of the clean speech signal, and it is
more non-stationary than other interference signals. Therefore,
although the speech babble has less flat frequency distribution
than the F16 cockpit noise, we can notice that, in general, the
performance of different algorithms is even worse than that in
F16 cockpit noise conditions, and it is only slightly better than
that in white Gaussian noise conditions.
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Fig. 13. (a) Estimation accuracy and (b) RMSE under different SIRs using
speech babble noise as the interference signal in the simulated room environ-
ment. Six microphones are used.

E. Performance in Real Room Environments
In this subsection, by using the MIRD database, we evaluate

the performance of different algorithms in real room conditions.
During the short-time observation period, it can be assumed
that the sound propagation from the source to microphone is
linear and time-invariant, therefore the measured RIR entirely
describes the real room environment [47]. Then different sce-
narios with various source DOAs in real room conditions can
be reproduced by convolving the source signals with the RIRs.
As the RIRs are measured with 48 kHz sampling rate, they are
downsampled to 8 kHz (the sampling rate of source signals) be-
fore convolution. For the interference-existing conditions, the
signal received by each microphone can be generated by mixing
the received speech and interference signals, which are gener-
ated separately with the RIRs corresponding to speech and in-
terference DOAs. However, for the spatially white noise condi-
tions, as real noise recordings that are uncorrelated at different
microphones are unavailable, we can not reproduce the this type
of noisy testing data in real room environments. Therefore, in
this subsection, we only test the performance in directional in-
terference conditions.
Similar to the simulated interference-existing conditions, for

the real room environments, various scenarios with different
SIRs and types of interferences are reproduced. We consider

three different SIRs, which are dB, 5 dB and 15 dB,
corresponding to the highly, moderately and slightly noisy
environments respectively. Again, the car interior noise, F16
cockpit noise, white Gaussian noise, and speech babble noise
are taken as interference signals. In each SIR and interference
type, the speech source appears from to 90 with step size
as 30 , and the interference source is located at the direction of
15 , 45 , or 75 . We separately generate the received speech
signal and interference signal using the real RIRs, and mix
them at certain SIRs to produce the noisy observations. For
each evaluated algorithm, in each SIR and interference type,
the estimation results under different combinations of speech
and interference DOAs are jointly analyzed for an overall
evaluation.
The performance of different algorithms in real room envi-

ronments are summarized in Fig. 14. From Fig. 14(a), (b), it
can be seen that when the dB, compared with the
broadband MUSIC and SRP-PHAT algorithm, the proposed
method can produce much better performance in all interfer-
ence types considered. Although the method in [26] can work
more reliably than the proposed method in car interior noise
conditions, its performance is much lower than the proposed
method in other interference types, especially when the speech
babble noise exists. Comparing between the Fig. 14(a) ,
we can observe that when the SIR gets higher, all algorithms
can perform more robustly, nevertheless, in almost all sce-
narios, the proposed method achieves the best results. On the
other hand, we can also notice that in each SIR, although dif-
ferent algorithms generally work better in car interior noise
conditions, while less robustly in white Gaussian noise or
speech babble noise conditions, the proposed method exhibits
the least fluctuations in performance, which implies that it is
less sensitive to the type of interference than the comparison
methods.

VII. CONCLUSION
Estimating the DOA of the speech source is a challenging

problem in noisy conditions. In this paper, we developed a new
DOA estimation method which can perform robustly no matter
the noises in different microphones are spatially white or direc-
tional. The proposed method is formulated in the bispectrum
domain, and the core of the proposed method is the “WBSCM,”
which contains the spatial correlation information of multiple
BPDs. As is HOS-based, the proposed method can exploit the
vanishing property of HOS against the Gaussian noise. More-
over, by analyzing the BPD between the signals received by
a pair of microphones, we showed that in the bispectrum do-
main, the speech DOA cue, which approximates to the BPD in
speech-dominated units, is redundantly expressed, and the re-
dundancy helps to improve the robustness of the algorithm. We
proposed a decision-directed method to compute a set of bis-
pectrum weights, which can be used to select the speech-dom-
inated bispectrum units. By using the BPDs of multiple micro-
phones and the computed bispectrum weights, we formulated a
matrix called WBSCM. The WBSCM is a function of the hy-
pothesized DOA, and exhibits a special property only when the
hypothesized matches the true one. Finally, based on the eigen-
value analysis of the WBSCM, a new DOA estimator is further
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Fig. 14. Estimation accuracy and RMSE under different SIRs and types of interferences in real room conditions. The SIR is dB for (a)(b), 5 dB for (c)(d), and
15 dB for (e) (f). The types of interference are white Gaussian noise (WGN), F16 cockpit noise (F16), car interior noise (Car), and speech babble noise (Babble),
respectively.

developed. By conducting experiments under various kinds of
noisy scenarios, we demonstrated the effectiveness of the pro-
posed method.
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