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Abstract

Recently, supervised speech separation has been extensively
studied and shown considerable promise. Due to the tem-
poral continuity of speech, speech auditory features and sep-
aration targets present prominent spectro-temporal structures
and strong correlations over the time-frequency (T-F) domain,
which can be exploited for speech separation. However, many
supervised speech separation methods independently model
each T-F unit with only one target and much ignore these useful
information. In this paper, we propose a two-stage multi-target
joint learning method to jointly model the related speech sepa-
ration targets at the frame level. Systematic experiments show
that the proposed approach consistently achieves better separa-
tion and generalization performances in the low signal-to-noise
ratio(SNR) conditions.

Index Terms: speech separation, multi-target learning, compu-
tational auditory scene analysis (CASA)

1. Introduction

In real-world environments, the background interference sub-
stantially degrades the speech intelligibility and the perfor-
mance of many applications, such as speech communication
and automatic speech recognition (ASR) [1,7,12,18]. To ad-
dress this issue, the speech separation, which aims to extract the
speech signal from the mixture, has been studied for decades.
However, it is still a challenging task to achieve effective speech
separations in real-world environments, especially when the
signal-to-noise ratio (SNR) is low and only one microphone is
available.

Speech separation can be formulated as a supervised learn-
ing problem [12,24,26]. Typically, a supervised speech sepa-
ration learns a function that maps the noisy features extracted
from the mixture to certain ideal masks or clean spectra that
can be used to separate the target speech from the mixture. As
a new trend, compared to the traditional speech enhancemen-
t [13], supervised speech separation has shown to be substan-
tially promising for challenging acoustic conditions [12,24,26].

Supervised speech separation has two main types of train-
ing targets, i.e. the mask-based targets [23] and spectra-based
one [26]. For the mask-based targets, the algorithm learns the
best approximation of an ideal mask computed using the clean
and noisy speech, such as the ideal ratio mask(IRM) [14, 25],
while for the spectra-based targets, it learns the best approxi-
mation of the clean speech spectra, such as the Gammatone fre-
quency power spectrum(GF) [9]. Both the IRM and GF can be
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Figure 1: Left: the GF of clean speech; Right: the IRM com-
puted with the clean speech and white noise (mixed at O dB)

used to generate the separated speech with the improved intelli-
gibility and/or perceptual quality [23]. Intuitively, the IRM and
the GF of clean speech present similar spectro-temporal struc-
tures as is shown by the example in Fig. 1. In fact, mathemati-
cally, the IRM can be derived from the GFs of clean speech and
noise, which is computed as follows:

_ S2(t, f)

IRM(t, f) = S2(t, f) + N2(t, f)

)

where S(t, f) and N?(t, f) are the GFs of clean speech and
noise in the time-frequency (T-F) unit of channel f and frame
t, respectively. Moreover, due to the sparsity of speech in the
T-F domain, the GF keeps relatively invariant harmonic struc-
ture in various auditory environments, and the IRM is inherently
bounded and less sensitive to estimation errors [15]. These cor-
relations and complementarity can be exploited for speech sepa-
ration. But they are much ignored in previous works. Therefore,
jointly modeling the IRM and GF in one model will probably
improve the separation performance.

In this paper, we propose a multi-target deep neural net-
work (DNN) to jointly model the IRM and GF. Its target is the
combination of the IRM and the GF of clean speech. To fur-
ther improve the separation performance, a two-stage method is
explored. In the first stage, the multi-target DNN is trained to
learn a function that maps the noisy features to the joint targets
for all frequency channels in one frame. Compared to the in-
dividual T-F unit, modeling at the frame level can capture the
correlations over the frequency domain in speech. Moreover, to
exploit the spectro-temporal structures in speech auditory fea-
tures and joint targets, we use denoising autoencoders (DAE)
to model them by self-learning, respectively. Then, the learned
DAESs are combined with a linear transformation matrix W}, to
initialize the multi-target DNN. Finally, according to the differ-
ent errors produced by output nodes, a backpropagation (BP)
algorithm with bias weights is further explored to fine tune the
multi-target DNN. In the second stage, the estimated IRM and
GF are integrated into another DNN to obtain the final separa-
tion result with higher smoothness and perceptual quality.
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2. First Stage: Multi-Target Joint Learning

Typically, it has been recognized that by the multi-task joint
learning, related tasks which share some common information,
can be jointly modeled to improve the performance of each oth-
er [8]. This claim has been proven both empirically and theoret-
ically [2]. For speech separation, as has been discussed before,
the IRM and GF are highly related and have much shared infor-
mation with respect to the speech separation problem. There-
fore, it can be expected that the performance of speech sepa-
ration can be improved by jointly modeling these two related
tasks. Recently, a multi-target DNN has been extensively stud-
ied and achieved remarkable success in many applications [5].
Same with the general DNN, the multi-target DNN also consists
of one input layer, multiple hidden layers and one output layer.
The key difference is that the output layer of multi-target DNN
is composed of multiple related targets. In this paper, in order
to improve the performance of speech separation, we construct
a multi-target DNN to jointly learn the IRM and the GF of clean
speech. Specifically, in each frame, the IRM and GF are com-
bined into one vector, and its each element corresponds to one
output unit of the multi-target DNN.

2.1. Learning and mapping of spectro-temporal structures

As speech auditory features might be severely interfered by
noise at low SNR conditions, it is very difficult to directly learn
amap from noisy features to separation targets. However, due to
linguistic constraints and speech production mechanisms, both
speech auditory features and separation targets present promi-
nent spectro-temporal structures that keep relatively invariant to
various acoustic conditions [25]. Compared to the direct map-
ping from features to targets, these output structures could be
used to regularize the learning and make the mapping more
robust [25]. In this paper, we use two DAEs to exploit the
spectro-temporal structures in speech auditory features and sep-
aration targets. Through self-learning, one DAE is trained on
the auditory features and the other is trained on the joint tar-
gets of the IRM and GF. To capture temporal structures, the
DAEs are trained on a window of frames instead of single
time slices. Once the DAE is trained, the outputs of its cod-
ing layers can be regarded as the learned structured patterns
from data [3]. Then the structured patterns learned from au-
ditory features can be mapped into those learned from sepa-
ration targets through a simple linear transformation, and the
linear transformation weights W, can be directly computed by
W, = (H,"H,) '"H,"H,, where H, is the output matrix
of the last coding layer in the DAE trained on the auditory fea-
tures and H,, is the output matrix of the last coding layer in the
DAE trained on the joint targets of the IRM and GF. The ele-
ment of row vector in H,, and H,, corresponds to the output of
one note in the last coding layer of the corresponding DAE. In
fact, the above processes can be seen as the pre-training step of
the multi-target DNN. The learned weights W, and W, in the
two DAEs, as well as the mapping weights W, can be used to
initialize the corresponding weights in the multi-target DNN, as
shown in Fig. 2.

At last, we use a supervised learning algorithm to fine
tune the multi-target DNN. Interestingly, even without the fine-
tuning step, the multi-target DNN pre-trained by the proposed
method can also achieve relatively good separation results in
our preliminary experiment, which may owe to that the ini-
tial model has the ability in learning and mapping the spectro-
temporal structures in auditory features and joint targets.
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Figure 2: The initialization of the multi-target DNN through the
learning and mapping of spectro-temporal structures

2.2. Fine tuning using the BP algorithm with bias weights

In the multi-target learning, the learning of different targets can
be differently treated. In fact, each node in the output layer of
DNN can be seen as an individual target and the corresponding
learning procedure can be differently designed. Intuitively, the
nodes with the larger errors probably have greater potential for
decreasing the loss, and their learning should be reinforced. To
this end, we use bias weights p to weight the errors of the output
nodes. p is related to the errors and can be computed by Eq. (2).
Accordingly, the loss function is defined by Eq. (3).

_ _ hwp(®) —y[ - min(jhwb(x) — y])
max(|hw,b(x) = y|) — min(|hw,b(x) - yI)

@3

1
J(W.bix,y) = S llVpe (hwo(x) =y)I° O

where e and |-| denote the element-wise matrix multiplication
and the absolute value operator, respectively. W and b stand
for the connection weights and bias in the network, x and y are
the inputs and the corresponding targets. hy, b (x) is the output
of the network. p is a vector whose elements correspond to the
output nodes of the network.

For each output node, the larger the error is, the greater the
corresponding element in p is. It means that the learning of
the node producing larger error will be more emphasized in the
next iteration. We should note that the bias weight p can be
determinately computed be Eq. (2) in each iteration, and it does
not need to be optimized. In gradient-based optimization, the
commonest method is the steepest gradient descent algorithm
which is based on greedy rule [10]. However, it probably falls
into local minima and may need more iterations to converge
to the optimal point. In this paper, as the red arrow shows in
the Fig. 3, we use the bias weights associated with errors to
change the direction of the steepest gradient descent towards the
direction that is farthest to the global optimal point. Compared
to the direction of steepest gradient descent, this direction tends
more to the direction of the global optimal point, but ensures
the descent of the errors, which may bring faster convergence
and avoid falling into some local minima.

To examine the effectiveness of the proposed optimization
method, we design a DNN-based speech separation experiment.
The input is the noisy feature and the output is the IRM. We
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Figure 3: A example of the proposed optimization method. The
black arrow is the direction of steepest gradient descent; The red
arrow is the direction of the changed gradient with bias weights.

T T T
Training mse with the propsed BP |5
Training mse with the standard BP
= = = Validating mse with the standard BP |-
= = = Validating mse with the proposed BP

.
40
iteration

.
30

.
20

50

Figure 4: A example of DNN for speech separation.

train two DNNs with same configurations setting and dataset.
But one is trained with the standard BP algorithm [17] and the
other is trained with the proposed BP algorithm. The mean
square errors(MSE) on the training set and the validating set are
used to evaluate the performances of the different algorithms
and depicted in Fig. 4. The results show that the DNN trained
with the proposed BP algorithm can achieve smaller errors on
both training set and validating set. The main reason is that
the BP algorithm with bias weights may avoid falling into some
local minima due to the changed gradient direction.

2.3. Auditory feature extraction

We apply a 64-channel gammatone filterbank to the input sig-
nals, and the resulting output of each channel is windowed into
20ms time frames with 50% overlap. Then we extract com-
plementary acoustic features from the mixture speech at the
frame level, and they include the amplitude modulation spectro-
gram(AMS), relative spectral transformed perceptual linear pre-
diction coefficients(RASTA-PLP), mel-frequency cepstral co-
efficients(MFCC) and 64-channel Gammatone filterbank pow-
er spectra(GF) [22]. All features are concatenated with the
corresponding delta features and smoothed by a second order
auto-regressive moving average(ARMA) [4] filter along tempo-
ral trajectories.

3. Second Stage

The IRM and GF estimated by the multi-target DNN in the first
stage contain much complementary information that can be ex-
ploited to further boost speech separation. In this paper, we use
a DNN to integrate the estimated IRM and GF for obtaining the
separated speech with higher smoothness and perception qual-
ity. As the estimated IRM and GF lose some information of
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speech, in addition to the estimated IRM and GF, the input fea-
tures of the DNN are also concatenated with the noisy auditory
features. The output of the DNN is the IRM.

4. Experiments and Results
4.1. Dataset and evaluation metrics

We systematically evaluate the proposed approach on Chinese
National Hi-Tech Project 863 corpus which consists of 100,000
utterances recorded by 100 female and 100 male speakers. As
pilot experiments, the evaluation is performed on a relatively
small corpus. Therefore, for training, 100 utterances from 5
male and 5 female speakers, with 10 utterances for each speak-
er, are randomly chosen to mix with three types of non-speech
noises(babble, speech shaped noise and factory) at 0 and -5 dB,
respectively. For testing, we randomly choose 50 new utter-
ances from the same 5 female and 5 male speakers to mix with
six types of noises(babble, speech shaped noise, factory, traffic,
machine and cocktail [6]) at -10,-7, -5, -2 and 0 dB, respective-
ly. We should note that three types of noises in the testing set
are not available to the training set, so this experimental setting
can evaluate the generalization ability to noise.

We take the absolute gains of Short-Time Objective Intel-
ligibility score (STOI) [19] and SNR compared to the unpro-
cessed noisy speech, as well as the Perceptual Evaluation of
Speech Quality (PESQ) [16] for evaluation. These metrics are
relative to the speech intelligibility and/or perception quality.

4.2. Related models for comparisons and configurations

To systematically evaluate the proposed model, we choose
the single-target DNN-based [23] (denoted as ‘ST-DNN’) and
DNN-NMF-based [25] (denoted as ‘DNN-NMF’)speech sepa-
ration models for comparison. For ST-DNN, we use a DNN
with three hidden layers which have 320, 320 and 160 sigmoid
units, respectively. Its inputs are a 5-frame window of com-
plementary acoustic features described in subsection 2.3 and
its outputs are the IRM computed using the clean speech and
noise. We should note that the DNN simultaneously models al-
1 frequency channels rather than the individual T-F unit. The
standard BP algorithm is used to optimize the DNN. We use
the mini-batch gradient descent of 500 samples to train it from
a initial model that is pre-trained by the stacking DAE with
100 epochs of training on the noisy auditory features [20, 21].
The training of the DNN is performed 100 epochs with a varied
learning rate from 0.5 to 0.01 and couples with a dropout reg-
ularization (dropout rate 0.2) [11]. A momentum rate of 0.5 is
used for the first 5 epochs, after which the rate increases to and
is kept as 0.9. For simplicity, unless mentioned explicitly, the
DNNs in all experiments are trained with same configurations
setting, same dataset and hyper-parameters.

Instead of directly estimating the IRM, DNN-NMF predicts
the basis weights inferred by the non-negative matrix factoriza-
tion (NMF), which can be used to generate the estimated mask.
Compared to ST-DNN, this is the only difference. For the com-
parison, we use the same NMF configuration(e.g. 128 bases and
a sliding window of 5 frames) with that in [25] for DNN-NMF.

4.3. Result and evaluation

In this section, we examine the effectiveness of the proposed ap-
proaches from several aspects, including the effect of the multi-
target of the IRM and GF, the effect of the proposed BP algo-
rithm with bias weights, the effect of the proposed pre-training



step described in subsection 2.1, and the effect of integrating
the evaluated IRM and GF with a DNN in the second stage.

First, we explore the case of single-target DNN(denoted as
‘ST-DNN”) and the case of multi-target DNN (denoted as ‘MT-
DNN’). The difference between ST-DNN and MT-DNN is that
ST-DNN only predicts the IRM and MT-DNN synchronously
predicts the IRM and the GF of clean speech. The results are
shown in the first and second rows in Table 1. We observe that
MT-DNN consistently achieves significant improvement on all
evaluation metrics in both matched and unmatched noise con-
ditions. This mainly owes to that the IRM and GF contain rich
complementary and correlative information that can be exploit-
ed by the multi-target DNN for speech separation.

Second, we explore the case of using the proposed BP al-
gorithm with bias weights to optimize the multi-target DNN,
denoted as ‘MT-DNN-PW’, and we compare it with MT-DNN.
The results are shown in the second and third rows in Table
1. Compared to MT-DNN, MT-DNN-PW achieves further im-
provement. It suggests that the proposed BP algorithm with bias
weights probably make the optimization reach to the better ex-
tremal point than the standard BP algorithm. This mainly owes
to that the bias weights change the direction of gradient descent
toward the direction of the global optimal point.

Third, we explore the case of using the proposed pre-
training method to initialize the multi-target DNN, denoted as
‘MT-GM-DNN-PW’, and we compare it with MT-DNN-PW.
They both are fine tuned by the proposed BP algorithm with
bias weights but have different pre-training ways. MT-DNN-
PW is pre-trained by the stacking DAE trained on the noisy au-
ditory features and MT-GM-DNN-PW is pre-trained by the pro-
posed method, and you can return to the subsection 2.1 for the
detailed pre-training steps. The results are shown in the third
and fourth rows in Table 1. We observe that MT-GM-DNN-
PW achieves the better separation performance than MT-DNN-
PW in both matched and unmatched noise conditions. On the
one hand, DAE has capacity in capturing the spectro-temporal
structures in speech auditory features and separation targets for
speech separation, on the other hand, due to the similarity and
invariance of the structure patterns in the features and targets,
the mapping of structure patterns is easier and more robust than
the direct mapping from features to targets.

The fifth row in Table 1 presents the results of the case
using a DNN to integrate the IRM and GF evaluated by MT-
GM-DNN-PW, denoted as “TWO-STAGE’. Its inputs consist of
the noisy auditory features, the evaluated IRM and GF, and its
outputs are the IRM. We observe that TWO-STAGE perform-
s best in matched noise condition and has only a little loss of
performance in unmatched noise condition. The improvements
mainly owes to that the rich complementary information in the
evaluated IRM and GF can be exploited by the DNN for speech
separation and the integration of the IRM and GF can smooth
the separation. The loss of performance in unmatched noise
condition maybe caused by the over-fitting of DNN.

Finally, we compare our methods with DNN-NMF under
the same setting. The results of DNN-NMF are shown in the
last row in Table 1. We observe that DNN-NMF outperforms
ST-DNN but perform worse than the proposed methods. It sug-
gests that NMF captures the spectro-temporal structures in the
IRM but has limited capacity in learning structure patterns com-
pared to DAE due to its shallow and linear structure. In addition,
DNN-NMF only predicts the IRM, and ignores the correlation-
s and complementarity in the IRM and GF. Moreover, we also
observe that DNN-NMF has worse generalization ability to un-
matched noise. The possible reason is that the spectro-temporal
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Table 1: The absolute gains on STOI(%) and SNR(dB), as well
as the PESQ score that different methods obtains at -5SdB SNR.

System Matched noise Unmatched noise
¢STOI gSNR PESQ gSTOI gSNR PESQ

ST-DNN 20.08 17.17 2.14 | 11.54 10.60 1.32
MT-DNN 21.14 17.67 222 | 1235 10.75 1.36
MT-DNN-PW 21.60 18.13 2.24 | 12.38 10.62 1.35
MT-GM-DNN-PW | 22.09 18.69 2.21 | 12.86 10.89 1.36
TWO-STAGE 23.06 19.41 2.39 | 12.51 10.68 1.30
DNN-NMF 2048 1694 2.15 | 10.18 9.69 1.20
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Figure 5: The STOI gains of different systems at differen-
t SNRs. Left Fig: the matched-noise case; Right Fig: the
unmatched-noise case.

bases of the IRM learned by NMF is sensitive to noise.

Moreover, we also compare the generalization ability to un-
matched SNRs with other methods. As the results show in Fig.
5, the proposed methods perform best in both matched and un-
matched noise conditions, which mainly owes to incorporating
the spectro-temporal structure in speech and the correlation be-
tween the IRM and GF into the supervised speech separation,
and these useful information keeps relatively invariant to vari-
ous SNR conditions due to the sparsity of speech.

5. Conclusion and Related Works

The works presented here mainly focus on the supervised
speech separation. Along this research line, many meth-
ods have been proposed and achieved considerable success
[12,23,24,26]. Among these methods, many methods formu-
late speech separation as a binary classification problem, such
as [12], [24]and [22]. They independently model the individ-
ual T-F unit with only one target such as the IBM, and ignore
the spectro-temporal structure in auditory features and the cor-
relation of various separation targets. Recently, several super-
vised speech separation methods are proposed to simultaneous-
ly model all T-F units [23,25] in one frame, and use the IRM
as the target. Although they take the correlation over the T-
F domain into account, only one separation target is used and
the correlation between different separation targets is ignored.
Compared to the previous works, the main contributions of our
work are: 1) proposing a multi-target DNN to jointly model the
IRM and GF for exploiting their correlation. 2) exploring a pre-
training method for the multi-target DNN, which can capture
the spectro-temporal structures in auditory features and sepa-
ration targets; 3) proposing a BP algorithm with bias weights
to change the direction of steepest gradient descent toward that
of the global optimal point, which may avoid to fall into some
local minima; 4) integrating the estimated IRM and GF with a
DNN to further improve the separation performance.
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