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ABSTRACT

An end-to-end speech enhancement system for hearing aids is pro-
posed which seeks to improve the intelligibility of binaural speech
in noise during head movement. The system uses a reference beam-
former whose look direction is informed by knowledge of the head
orientation and the a priori known direction of the desired source.
From this a time-frequency mask is estimated using a deep neural
network. The binaural signals are obtained using bilateral beam-
formers followed by a classical minimum mean square error speech
enhancer, modified to use the estimated mask as a speech presence
probability prior. In simulated experiments, the improvement in a
binaural intelligibility metric (DBSTOI) given by the proposed sys-
tem relative to beamforming alone corresponds to an SNR improve-
ment of 4 to 6 dB. Results also demonstrate the individual contribu-
tions of incorporating the mask and the head orientation-aware beam
steering to the proposed system.

Index Terms— Beamforming, Speech enhancement, Time-
frequency mask, Assisted listening, Head rotation

1. INTRODUCTION

Whilst hearing aids are easily capable of improving audibility, mak-
ing speech intelligible in the presence of high levels of background
noise remains an important challenge. Two approaches to speech
enhancement that can offer worthwhile intelligibility improvements
are spatial selectivity and mask-informed enhancement. A hearing
aid signal processing scheme is proposed which combines these ap-
proaches with dynamic head-tracking information.

Spatial selectivity can be obtained using beamforming whereby
the signals from multiple microphones are filtered and combined to
preserve signals arriving from one direction while suppressing those
from other directions. It is typically assumed that the signal of inter-
est, the desired source, is positioned in front of the listener and so the
beam is steered to the front. If the signals from only one aid are used,
the beam pattern is quite broad and so the suppression of interferers
is limited. Combining signals from binaural aids allows narrower
beams to be obtained at the expense of additional power consump-
tion [1, 2]. An undesired consequence of combining signals from
both ears is that the interaural differences associated with interfer-
ing signals can be reduced [3], degrading the ability of the auditory
system to separate the speech and interference [4]. A number of ap-
proaches have been proposed which add constraints to the binaural
beamformer in order to maintain the interaural cues of sources whose
directions or signal statistics are known or can be estimated [5, 6, 7].
Estimation of source and interferer directions of arrival (DOAs) in
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low signal to noise ratio (SNR) conditions is a challenging problem
in its own right. Moreover, natural head movements make online es-
timation of signal parameters difficult and so care must be taken to
avoid instability in the beamforming filters.

In [8, 9] DOA estimation of two sources with rotating arrays was
informed by an inertial measurement unit (IMU), with the resulting
DOAs used to steer generalized-sidelobe-canceler beamformers for
source separation. In our approach we similarly assume that the head
orientation is available from an IMU. However, to ensure robustness
at low SNRs, we propose a simple user calibration procedure to set
the desired source DOA and signal-independent beamforming.

It has been shown that methods based on binary masks are
able to improve the intelligibility of single-channel enhanced speech
whereas conventional minimum mean squared error (MMSE)-based
approaches are unable to do so [10]. Unfortunately, the direct appli-
cation of a binary mask leads to poor perceived quality [11]. In this
work, we (i) use a deep neural network (DNN) to estimate a binary
mask that captures the modulations of the target source and (ii) use
the mask to define the speech presence probability in a conventional
speech enhancer [12, 13].

The signal model is described in Sec. 2. Our approach to
combining signal independent, head-tracking-informed beamform-
ing with mask-informed enhancement is outlined in Sec. 3. Experi-
ments are presented in Sec. 4 and conclusions drawn in Sec. 5.

2. PROBLEM FORMULATION

The problem is formulated directly in the short term Fourier trans-
form (STFT) domain with frequency index denoted ν and time frame
denoted `. The acoustic pressure at an arbitrary point in a free field,
at which we place the origin of our coordinates system, is modeled as
an infinite sum of plane waves. The DOA of a wavefront is denoted
Ω = (ϑ, φ), where ϑ is the inclination and φ is the azimuth and the
underline notation indicates angles expressed in world coordinates.
Taking the coordinate origin to be the center of the listener’s head,
the signal at the origin due to the desired source is denoted SO(ν, `)
and has DOA Ωs. The undesired signal, due to interfering sources
and diffuse acoustic noise, is VO(ν, `) =

∫
Ω∈S2 V (ν, `,Ω)dΩ,

where V (ν, `,Ω) is the acoustic noise signal arriving from direction
Ω and dΩ = sin(ϑ)dϑdφ.

The signal received by the mth microphone in the array is

Ym(ν, `) = Xm(ν, `) + Vm(ν, `) + χm(ν, `) (1)

where Xm(ν, `) and Vm(ν, `) represent the contributions due to the
desired source and acoustic noise, respectively, and χm(ν, `) is sen-
sor noise, which is uncorrelated between the microphones.The trans-
formations from SO(ν, `) and VO(ν, `) to Xm(ν, `) and Vm(ν, `),
respectively, depend on the array’s shape, which is assumed to be
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fixed, and its orientation, which may vary with time. The array mani-
fold,Hm(ν,Ω), is defined as the relative transfer function (RTF) be-
tween the signal at the mth microphone and the pressure that would
have been observed at the origin for a plane wave with DOA with re-
spect to the array, Ω. The apparent DOA with respect to the array at
time frame `, Ω(`), is a function of the array orientation, Λ(`). Us-
ing the multiplicative transfer function (MTF) approximation [14],
the dependence of the microphone signals on the free-field signals is

Xm(ν, `) = Hm(ν,Ωs(`))SO(ν, `) (2a)

Vm(ν, `) =

∫
Ω∈S2

Hm(ν,Ω(`))V (ν, `,Ω)dΩ. (2b)

Our aim is to enhance the contribution of the desired source to
the left and right reference channels, denoted Xl(ν, `) and Xr(ν, `),
respectively, such that the predicted binaural intelligibility of the de-
sired source is maximized.

It is assumed that the orientation, Λ(`), of the head is available,
for example using an IMU, and that the DOA of the desired source,
Ωs, is known, or can be obtained using a straightforward calibration
step by the user.

3. PROPOSED SYSTEM

The proposed speech enhancement system for binaural hearing aids
with head-tracking is shown in Fig. 1. The steering block determines
the direction of the desired source with respect to the current orien-
tation of the head. The reference beamformer is steered towards
the desired source and estimates the desired free-field source sig-
nal at the origin. This signal is used to estimate a mask, B(ν, `),
which aims to optimize monaural speech intelligibility. The bilat-
eral beamformers are steered towards the listener’s look direction
(i.e. fixed with respect to the rotating head) and produce estimates
of the desired source at the left and right reference channels. Finally,
the estimated mask is used by the enhancement block to improve the
intelligibility of the binaural signals.

3.1. Beamformers

The proposed system uses a total of three beamformers, identified by
subscript α ∈ {O, l, r}, which are described by the general equation

Zα(ν, `) = wα(ν, `)Hyα(ν, `) (3)

where wα(ν, `) is the vector of filter weights, yα(ν, `) is the vec-
tor of input signals and (·)H is the conjugate transpose operator.
To obtain optimal noise reduction under the constraint of no speech
distortion, the filter weights are given by the well-known minimum
variance distortionless response (MVDR) solution [15]

wα(ν, `) =
Rα(ν, `)−1dα(ν, `)

dα(ν, `)HRα(ν, `)−1dα(ν, `)
(4)

where Rα(ν, `) = E{(yα(ν, `)−xα(ν, `))(yα(ν, `)−xα(ν, `))H}
is the covariance matrix of the interference and dα(ν, `) is the
steering vector. For robustness, all three beamformers approximate
Rα(ν, `) by assuming that the interference is due to a spherically
isotropic noise field and no sensor noise. They differ in their input
signals and steering vectors. Since the weights at each frequency are
independent, the dependence on ν is omitted in the remainder of this
section.

The reference beamformer, identified by α = O, exploits all M
input signals, yO(`) =

[
Y1(`) Y2(`) · · · YM (`)

]T
, where (·)T

Bilateral
Beamformers

Reference
Beamformer Estimate mask

Apply mask

Steering

y(ν, `)

S̃O(ν, `)

X̃r(ν, `)
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X̂r(ν, `)

X̂l(ν, `)

B(ν, `)

Λ(`)

Ωs(` = 0) ΨO(`) = Ωs(`)

Ψl(`) = (90◦, 0◦)

Fig. 1. Block diagram of proposed system. Solid lines repre-
sent acoustic signals with thick lines used for multichannel signals.
Dashed lines represent parameter values.

denotes the transpose operator, and is steered towards the desired
source, ΨO(`) = Ωs(`). Since the aim is to estimate SO , i.e. the
desired source signal at the origin, and the array manifold is defined
in Sec. 2 as the RTF with respect to the origin, the required steering
vector is

dO(`) =
[
H1(ΨO(`)) H2(ΨO(`)) · · · HM (ΨO(`))

]T
. (5)

The bilateral beamformers obtain, for each ear, a single channel
estimate of the desired signal in the reference channel of that ear.
The left and right beamformers, denoted by subscripts l and r re-
spectively, each use microphones only from their respective ear and
are, therefore, independent. Without loss of generality, the micro-
phones are indexed such that those on the left (resp. right) side have
odd (resp. even) values of m and the reference channel is m = 1

(resp. m = 2). Therefore yl(`) =
[
Y1(`) Y3(`) · · · YM−1(`)

]T
and yr(`) =

[
Y2(`) Y4(`) · · · YM (`)

]T .
In [4] it was observered that the beam patterns of bilateral beam-

formers steered towards the front of the array are similar to those of
the reference channels over a wide range of angles, which may be
expected to help natural binaural localization. The time-invariant
steering vectors for the bilateral beamformers are therefore given by

dl =
[
H1(Ψ) H3(Ψ) · · · HM−1(Ψ)

]T
/H1(Ψ) (6)

dr =
[
H2(Ψ) H4(Ψ) · · · HM (Ψ)

]T
/H2(Ψ) (7)

with Ψl(`) = Ψr(`) = Ψ = (90◦, 0◦). The loss in beamformer per-
formance due to mismatch between the source DOA and the bilateral
beamformers’ look direction is not substantial (see Section 4.3).

3.2. Mask estimation

The target for the mask estimation algorithm is a modified ver-
sion of an oracle mask presented in [16] which we term the high-
resolution stochastic WSTOI-optimal binary mask (HSWOBM).
The HSWOBM optimizes a version of the WSTOI intelligibility
metric [17] with increased frequency resolution for a stochastic noise
signal with a known power spectrum. This high resolution version of
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weighted STOI (WSTOI) is identical to WSTOI except that the cor-
relation comparison is performed on modulation vectors computed
in bands which use the full STFT frequency resolution.

The power compressed (15th root) cochleagram feature set from
[18], modified to have 90 frequency channels with centers from 80
to 5000 Hz, is used as the input feature set for the DNN. This feature
set is computed with 25.6 ms frames centered on the mask bins. The
mask estimation procedure follows that of [18]: features within a
sliding window of length 13 frames are concatenated to form the
inputs of a DNN which simultaneously estimates all of the mask
values within a 5 frame window centered on the same frame. The
feature and estimation windows are incremented by 1 frame and the
procedure repeated, so that each mask value is estimated 5 times.
These estimates are averaged to obtain the overall mask estimate,
B(ν, `), for frequency bin ν and time-frame `.

The DNN has 90 × 13 = 1170 units in the input layer, 4 hid-
den layers each with 2000 rectified linear units, and 129× 5 = 645
sigmoidal units in the output layer. Stochastic gradient descent with
Nesterov momentum is used with a minibatch size of 1000, a learn-
ing rate of 0.1 and a momentum of 0.9. Dropout with a ratio of 0.2 is
used for the input layer and 0.5 for all hidden layers. The loss func-
tion for training the DNN is the mean square error in the estimated
mask with two time-frequency (TF) weightings applied. The first is
the speech intelligibility index band importance [19]. For each TF
cell, the second weighting is proportional to the reduction in high-
resolution WSTOI [17] that results from inverting the mask in that
cell of the oracle HSWOBM (i.e. the effect of a single error in the
estimated mask).

3.3. Speech enhancement

In contrast to most mask-based enhancers, the estimated binary mask
B(ν, `) is not applied directly to the noisy speech but is instead
used to supply prior information to a classical speech enhancer [13]
about the probability of speech presence in different TF regions us-
ing the approach from [12], which applies a gain function G(ν, `)
to frequency bin ν of frame `. The approach of [12] is modi-
fied to accommodate an estimated mask B(ν, `) that is continuous-
valued by replacing the equations in Sec. 2.2 of [12] by q(ν, `) =
Q0 +

(
Q1 −Q0

)
B(ν, `) and Gmin = G0 +

(
G1 −G0

)
B(ν, `).

To suppress artifacts during periods where no speech is detected
a modified gain

G′(ν, `) =

{
0 B(ν, `) < 0.1

G(ν, `) B(ν, `) ≥ 0.1

is applied, rather than G(ν, `) directly.

4. SIMULATION EXPERIMENTS

The performance of the proposed system was evaluated in simulated
experiments for a static sound source with continuously rotating and
static array orientations. Using a free-field model of sound proga-
tion, as in (2), allows frame-based processing to be used even dur-
ing rotation [20] while a diffuse noise model ensures that the noise
covariance matrix is independent of the rotation angle. Our analy-
sis is therefore concerned with the effectiveness of the mask-based
enhancement and in particular the impact of steering the reference
beamformer to match the DOA of the desired source with respect to
the array.

4.1. Signal generation

In each trial the microphone signals consisted of 10 s of desired
speech from a single target source, mixed with diffuse noise and spa-
tially white sensor noise, as in (1). The desired speech source was
located at Ω = (90◦, 30◦), i.e. on the horizontal plane and offset
towards the left of the listener’s nominal position. The performance
of the proposed system was evaluated under continuous sinusoidal
rotation of the array between ±30◦ with period 1 s. For compar-
ison, three static orientations of the array, with yaw angle 30◦, 0◦

and −30◦, were also evaluated. Note that these test conditions lead
to DOAs of the desired source with respect to the rotated array in the
range 0◦ − 60◦.

The desired speech propagation was modeled as a single plane
wave as in (2a) while diffuse noise was modeled by discretizing the
integral in (2b) as a summation over a 312-direction quadrature grid,
with an independent identically distributed (iid) source impinging
from each direction. Microphone signals for each individual plane-
wave source were generated with fast convolution using Hamming-
windowed signal frames of length 2 ms overlapping by 50%.

In each frame, dO(ν, `) was recalculated according to the cur-
rent DOA with respect to the rotated array. To avoid the possibility
of introducing interpolation errors, as would be the case for mea-
sured impulse responses, a binaural hearing aid array was simulated
using an analytical model of the pressure field around a rigid sphere
[21, 22] of radius 9 cm. The analytical model uses a spherical har-
monic series whose truncation order was determined as in [23] to
ensure the worst case error was less than -80 dB. The microphone
array, consisting of 2 microphones at each ear with 2 cm separation,
had a rectangular configuration. Placing the origin of our coordi-
nates system at the centre of the sphere, with positive x, y and z-axes
pointing forwards, left and up, respectively, the positions of the four
microphones, prior to any rotations, were all on the horizontal plane
at a radius of 10 cm, which corresponds to φ ∈ {±84.3◦,±95.7◦}.
The number of frequency bins in Hm(ν,Ω) was determined by the
length of the filters in the time domain required given the array radius
and the speed of sound.

Speech samples from the test partition of the TIMIT database
[24] were concatenated to obtain a total duration of 10 s. For spheri-
cally isotropic diffuse noise, independent realizations of long term
average speech spectrum (LTASS) noise [25] were generated for
each direction and weighted according to the quadrature grid. Spa-
tially white noise was generated as independent realizations of white
Gaussian noise for each microphone.

The A-weighted level of the free-field desired speech at the ori-
gin was normalized according to [26, 27] while the power of the
diffuse noise and spatially white noise were mixed to each obtain
a particular A-weighted SNR, denoted signal to diffuse noise ra-
tio (SDNR) and signal to spatially-white noise ratio (SWNR), re-
spectively. The overall test set comprised 4 speech utterances (two
males, two female) for each of 4 head rotation conditions (fixed
at 30◦, 0◦ or −30◦ or rotating sinusoidally between ±30◦) and 7
SDNRs (-15 to 15 dB in 5 dB increments), giving a total of 112
trials. The SWNR was fixed at 30 dB.

To assess the contribution of the estimated mask to the proposed
system we also evaluate the system performance when the ‘Apply
Mask’ block in Fig. 1 is replaced with the unmodified optimally-
modified log-spectral amplitude (OM-LSA) algorithm [28]. To as-
sess the contribution of head-tracking to the proposed system we also
evaluate the system performance with ΨO = (90◦, 0◦).
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Fig. 2. Effect of processing on predicted binaural speech intelligibility for (a) rotating head and (b-d) fixed head orientations. The algorithms
shown are (i) Ref: unprocessed reference microphones, (ii) BF only: X̃l(·) and X̃r(·), (iii) BF + OM-LSA: As (ii) with OM-LSA post
process, (iv) BF + MAE (fixed): As (v) but reference beamformer is not steered towards the source, (v) Proposed system as shown in Fig. 1.
Black lines with open symbols represent intermediate signals in the proposed system. Grey lines represent alternative processing strategies.

4.2. Implementation

The sampling frequency was 10 kHz. Beamforming was performed
using overlap-add convolution with 20 ms Hamming-windowed
frames overlapping by 50%. Beamformer weights were calculated
as described in Sec. 3.1 with Rα determined numerically using 1 s
of spherically isotropic uncorrelated white Gaussian noise (WGN)
from each direction on a 18× 36 equiangular quadrature grid.

The DNN was trained with 3296 utterances from the training
partition of the TIMIT database [24] combined with babble and
speech shaped noise from the RSG.10 database [29]. The noisy ut-
terances had average SNRs of {−2.7, −1.8, −0.6, 1.1} dB for bab-
ble noise and {−4.0, −3.0, −1.7, 0.2} dB for speech shaped noise.
The target HSWOBM were optimized for WGN at -5 dB SNR. The
parameters from [12] were used for the mask-informed enhancer.

4.3. Results and discussion

Fig. 2 shows the binaural STOI (DBSTOI) metric [30] for each test
condition as a function of SDNR. A shift to the left of a performance
curve represents an improvement in predicted intelligibility, which
can be quantified in terms of the equivalent improvement in SDNR.
This approach avoids the need to employ a non-linear mapping be-
tween DBSTOI values and predicted intelligibility, which may be a
function of the specific listening conditions.

Fig. 2(a) shows performance of the compared methods with a
sinusoidally rotating head. Using bilateral beamformers alone (indi-
cated (ii) in the plot legends) gives an inprovement of 3-4 dB com-
pared to the unprocessed case (indicated (i)). With our proposed
mask-informed enhancement (v) performance is further improved
over (ii) by 4–6 dB for SDNRs of -15–0 dB. At higher SDNRs
the DBSTOI metric for the proposed method plateaus, whereas the
beamformer alone continues to improve. In contrast, regardless of
SDNR, OM-LSA without our proposed modifications (iii) offers no
improvement over the bilateral beamformers alone (ii). It can there-
fore be concluded that the proposed mask is making a substantial

improvement and is best suited to relatively poor SNR conditions.
Figs. 2(b-d) show the DBSTOI metric under static conditions for

differerent head orientations. Consistent with pschoacoustic stud-
ies [31, 32], the unprocessed binaural reference signals (i) become
more intelligible when the head is oriented away from the source.
As for the rotating condition, (iii) offers no improvement over (ii).
For the bilateral beamformer alone (ii) when the head is oriented
away from the source (Figs. 2(c,d)) there is only a small reduction in
peformance (1–2 dB) due to the mismatch of the beamformer look
direction and the source DOA. However, after the proposed mask-
informed enhancement the system performance is no worse for head
rotation of −30◦ compared to 30◦, justifying the use of fixed bilat-
eral beamformers.

Comparing (iv) to (v) in Figs. 2(c,d) it can be seen that fixing
ΨO = (90◦, 0◦), i.e. not steering the reference beamformer towards
the target, degrades intelligibility by 2.5–5 dB, depending on the
input SDNR.

5. CONCLUSIONS

A novel signal processing approach for hearing aids has been pro-
posed which exploits head-tracking information, target speaker mask
estimation and mask-informed binaural speech enhancement. For
an illustrative case with the listener’s head oriented 30◦ away from
the desired source, the benefit of the proposed mask-informed en-
hancement over bilateral beamformers alone is equivalent to a 6 dB
improvement in SNR. The contribution of steering the reference
beamformer towards the desired source accounts for between 2.5
and 5 dB. In contrast, the classical speech enhancement approach
without our mask provides no measured intelligibility improvement.
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