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Abstract—Estimation of the noise covariance matrix is ad-
dressed for a sensor array that rotates during desired source ac-
tivity. Applications include beamformer design for head-mounted
microphone arrays in assistive hearing devices. We propose a
parametric model which leads to an analytical expression for the
sensor signal covariance as a function of the array orientation
and array manifold. The model allows the estimated noise co-
variance matrix to be updated in response to array rotation even
during desired source activity. Simulation results demonstrate
the efficacy of the method compared to a conventional, recursive
estimation approach in which the estimate is not updated during
desired source activity. The proposed method yields 18 dB lower
error in the estimated noise covariance matrix and the resulting
beamformer achieves noise reduction which is within 0.2 dB of
an oracle beamformer.

I. INTRODUCTION

Spatial filtering is a fundamental tool for multichannel
signal enhancement in noisy and reverberant environments and
is used in many applications, such as telecommunications, au-
tomatic speech recognition, human-robot interaction, assistive
listening devices and hearing aids. The widely used minimum
variance distortionless response (MVDR) beamformer [1] re-
quires knowlege of two quantities: the steering vector, which
defines the distortionless constraint, and the noise covariance
matrix (NCM), which describes the interchannel relationship
of the undesired signal. The focus of this contribution is the
estimation of the NCM encountered by a microphone array in
a non-isotropic sound field when the array can rotate freely in
three dimensions.

It is common to calculate the NCM based on an assumed
model of the noise field. Commonly-used models are spatially
white noise [2], [3], spherically isotropic noise [4], [5] or
cylindrically isotropic noise [6]–[8]. These models do not
account for the true spatial distribution of the acoustic noise
field since they are independent of the observed microphone
signals.

Adaptive estimation of the NCM normally requires noise-
only segments to be identified or an estimate of the speech-
absence probability to be determined [9]. In [10], for example,
it is assumed that the spatial characteristics of the noise do
not change while the desired source is active. This allows an
MVDR beamformer designed during noise-only segments to
be used during speech activity.

A major source of non-stationarity in the NCM which arises
in real-world situations is due to movement of the microphone
array. We consider in particular the case of array rotation
in response to desired source activity, for example, a robot
turning to face a new talker. Since the desired source is active

during the array rotation an immediate update of the NCM
estimate is not possible.

The convenience of spherical harmonics (SHs) for accomo-
dating rotations has been widely exploited in acoustic analysis
for spherical microphone arrays [11]–[13] and in binaural
rendering of sound scenes [14], [15]. However, in general it
is the plane-wave density (PWD) of the sound field which
is considered. In [16] the SH domain covariance matrix is
used to estimate the diffuseness of the sound field which is
modelled as an isotropic, and so rotation-invariant, background
with individual coherent components. Like [16], we consider
the sound field’s SH covariance matrix. However, in this
work, non-isotropic directionally-uncorrelated sound fields are
considered.

Beamforming for rotating microphone arrays using a gen-
eralized sidelobe canceller structure is proposed in [17], [18],
avoiding the need for an explicit estimate of the NCM. In
contrast, in this work we propose a SH representation of
the noise field from which the NCM can be determined
under arbitrary rotations of the microphone array. An adaptive
method for estimating the parameters of the proposed model
along with further results and analysis can be found in [19].

The remainder of the paper is organized as follows. In
Section II the problem is formulated. In Section III the
notation and some key properties of SH analysis are briefly re-
viewed. In Section IV the proposed model of the non-isotropic
directionally-uncorrelated field is presented and an analytical
expression for the resulting NCM is derived. Simulation exper-
iments which confirm the efficacy of the method under ideal
and non-ideal conditions are presented in Section V. Finally,
conclusions are drawn in Section VI.

II. PROBLEM FORMULATION

We consider a sound field which is sampled in successive
time frames by an array of Q microphones. During speech
absence, denoted H0 = 1, the sound field is considered to be
noise-only and is assumed to be in the far-field. The power
of the noise incident from each direction, or noise power
distribution (NPD), is assumed to vary only slowly with time
and so, over the time-scales considered in this paper, is treated
as constant. Since, in general, the NPD varies with direction,
the goal of this work is to estimate the time-varying NCM
from knowledge of the microphone signals, the time-varying
array orientation and the free-field array manifold.

Rather than estimate the NCM directly it is proposed to
estimate the parameters of a model for the NPD since these
are independent of array rotation. The estimated NPD is then

����������	�����
���������������
�������� ���������
���



used to derive the NCM as a function of the known array
orientation. An advantage of this approach is that the estimated
NCM can be updated in response to array rotation even during
speech presence, i.e. H0 = 0.

The acoustic noise field is described by the PWD, a(�,Ω),
where Ω is the direction of incident plane waves in world
coordinates. Throughout this paper, we use an underbar to
denote quantities that are defined in world coordinates and
are therefore unaffected by array rotation. The NPD, s(Ω),
gives the direction dependence of the noise-field power and is

s(Ω) = E{|a(�,Ω)|2} (1)

where � is the time-frame index, E {·} denotes expectation and
the expectation is over time.

The vector of noise signals, v(ν, �), recorded by an array of
Q microphones at frequency index ν and time-frame index � is
expressed directly in the short time Fourier transform (STFT)
domain

v(ν, �) = x(ν, �) + u(ν, �) (2)

where x(ν, �) and u(ν, �) are the vectors of Q complex-
valued microphone signals due to the acoustic noise and sensor
noise, respectively. Since each frequency bin is processed
independently, the dependence on ν is omitted below.

Assuming x(�) and u(�) are uncorrelated, the NCM of the
microphone noise signals is

Rv(�) = Rx(�) +Ru (3)

where Rv(�) � E
{
v(�)vH(�)

}
and (·)H is the conjugate

transpose. The acoustic NCM, Rx(�), and sensor NCM, Ru

are similarly defined. Note that, like the NPD, the sensor
NCM is assumed to be quasi-stationary. Therefore, the time-
dependence in (3) arises only from array rotation.

In Section IV an expression which relates the acoustic NCM
to a parametric model of the NPD is developed for a single
realization of the array rotation, Λ. In Section V an online
algorithm is used with time varying array rotation to adaptively
estimate the model parameters.

In this work directions are expressed both in world coordi-
nates and array coordinates. For an arbitrary array rotation, Λ,
the relation between Ω and Ω is given in [13, eq 1.65] and is
here denoted by Ω(Ω,Λ).

III. KEY PROPERTIES OF SPHERICAL HARMONICS

This section briefly presents the key properties of SH anal-
ysis to introduce the required notation. For a comprehensive
introduction the reader is referred to [13] or [20].

The complex SH functions of order n ≥ 0 and degree m
with |m| ≤ n are defined for Ω = (ϑ, ϕ) ∈ S2, as

Y m
n (Ω) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (cosϑ) eımϕ (4)

where Pm
n (·) is the associated Legendre function and ı =√−1. The SH functions form an orthonormal basis where

increasing n and m results in functions, Y m
n (Ω), with higher

spatial frequency. The spherical Fourier transform (SFT) of a
square-integrable function, K(Ω), is given by

Kn,m =

∫
Ω∈S2

K(Ω) [Y m
n (Ω)]

∗
dΩ. (5)

Assuming K(Ω) is spatially bandlimited, its order, NK, is the
maximum n for which any Kn,m > 0. To avoid a plethora
of subscripts, we index the individual SH functions with the
single index p = n2 + n+m+ 1 such that Yp(Ω) ≡ Y m

n and
Kp ≡ Kn,m, where 1 ≤ p ≤ PK = (NK + 1)2.

The inverse SFT (ISFT) decomposes K(Ω) in terms of the
Yp(Ω) and may be written in vector form as

K(Ω) = κTy(Ω) (6)

where the SH coefficient vector κ =
[K1 . . . KPK

]T
, the

SH function vector y(Ω) =
[
Y1(Ω) . . . YPK(Ω)

]T
and

(·)T denotes the transpose.
If K(Ω) is expressed in a rotated frame of reference as

K(Ω(Ω,Λ)), then the resultant SH coefficients may be ob-
tained in the SH domain as

κ = D(Λ)κ (7)

where D(Λ) is the Wigner-D rotation matrix [13], which is
block-diagonal and sparse.

IV. PROPOSED PARAMETRIC MODEL

In Section IV-A the acoustic NCM is related to the covari-
ance matrix of a SH domain representation of the PWD of
the sound field. In Section IV-B a parametric model for the
NPD is presented and its relationship to the acoustic NCM
derived. Throughout this section, for clarity of notation, a
single realization of the microphone array orientation, Λ, is
assumed such that the acoustic NCM, Rx, is time-invariant.

A. Acoustic NCM from sound-field covariance
Assuming the effective support of the array manifold is short

compared to the STFT frame length, the acoustic noise, xq(�),
observed by the qth microphone may be expressed as the array
response to an infinite sum of plane waves over S2

xq(�) =

∫
Ω∈S2

hq(Ω)a
(
�,Ω(Ω,Λ)

)
dΩ (8)

where a(�,Ω) is expressed in world coordinates and represents
the PWD of the sound field at the origin in the absence of the
microphone array and hq(Ω) for 1 ≤ q ≤ Q is the array
manifold.

In order to express (8) in terms of SHs, let a(�) be the
SH coefficient vector representing the PWD of the sound field
in array coordinates. In world coordinates, a(�,Ω(Ω,Λ)) =
a
(
�,Ω

)
may be decomposed using the ISFT from (6)

a
(
�,Ω(Ω,Λ)

)
= a(�,Ω) = aT (�)y(Ω). (9)

To express hq(Ω) in the SH domain ammenable to simpli-
fication, the SFT of the conjugate array manifold, h∗

q(Ω), of
microphone q is defined as [14]

h̃q,p =

∫
Ω∈S2

h∗
q(Ω)Y

∗
p (Ω)dΩ (10)

����



with the corresponding ISFT as

h∗
q(Ω) = h̃T

q y(Ω) (11)

where h̃q =
[
h̃q,1 . . . h̃q,Ph

]T
. Note that properties of the

SFT imply that, in general, h̃∗
q,p �= hq,p.

Substituting (9) and the conjugate of (11) into (8) gives

xq(�) =

∫
Ω∈S2

h̃H
q y∗(Ω)yT (Ω)a(�)dΩ (12)

= h̃H
q a(�) (13)

where the simplification follows from the orthonormality of
SHs [13]. The vector, x(�), of all Q microphone signals is
therefore given by

x(�) = H̃Ha(�) (14)

where H̃ =
[
h̃1 h̃2 . . . h̃Q

]
.

The acoustic NCM can therefore be expressed as

Rx = H̃HRaH̃ (15)

where

Ra = E
{
a(�)aH(�)

}
(16)

is the SH covariance matrix of the acoustic noise field in array
coordinates. Expressed in vectorized form [21], (15) is

rx =
(
H̃T ⊗ H̃H

)
ra (17)

where rx = Rx , ra = Ra , ⊗ denotes the Kronecker
product and · denotes the vectorization of a matrix obtained
by concatenating its columns. Thus (15) and (17) express the
acoustic NCM in terms of the SH covariance matrix of the
acoustic noise field.

B. Spherical harmonic model of noise power distribution

If the acoustic noise sound field is directionally-
uncorrelated, the covariance between two directions, Ω and
Ω′, of the sound-field PWD is

E
{
a(�,Ω)a∗(�,Ω′)

}
= s(Ω)δ(Ω− Ω′) (18)

where s(Ω) is the noise power distribution (NPD) defined in
(1) and δ(Ω−Ω′) is the delta function on the sphere at Ω′ =
(ϑ′, ϕ′). The parameters of the proposed model are the SFT
coefficients, s, of s(Ω) which satisfy the ISFT relation

s(Ω) = sTy(Ω) = yT (Ω)s (19)

where s is a Ps element vector of SH coefficients. The valid
range of s is constrained such that the NPD, s(Ω), is real-
valued and non-negative for all Ω.

The model parameters, s, are defined in world coordinates
which means that they are independent of the array rotation,
Λ. Using (7) and (19), s(Ω) can be written in array coordinates
as

s(Ω) = s(Ω(Ω,Λ)) (20)

= yT (Ω)D(Λ−1)s (21)

where Λ−1 denotes the inverse rotation of Λ.
It is shown in [19] that element (p′, p′′) of Ra in (16) is

given by

E
{
ap′(�)a∗p′′(�)

}
= gT

p′,p′′DT (Λ)s∗ (22)

where gp′,p′′ =
[
G1,p′,p′′ . . . GPs,p′,p′′

]T
and

Gp,p′,p′′ =

∫
Ω∈S2

Yp(Ω)Yp′(Ω)Y ∗
p′′(Ω)dΩ (23)

is the Gaunt coefficient, for which a closed form solution is
given in [22, pp. 39–40]. Therefore the vectorized SH co-
variance matrix, ra from (17), of a directionally-uncorrelated
sound field can be written as

ra = GDT (Λ)s∗ (24)

where G is a P 2
h ×Ps matrix in which row p′+(p′′−1)Ph is

equal to gT
p′,p′′ and Ph and Ps are the number of SH coeffi-

cients used to describe the microphone array manifold, hq(Ω),
and the noise power distribution (NPD), s(Ω), respectively.

Substituting (24) into (17) the acoustic NCM is

rx =
(
H̃T ⊗ H̃H

)
GDT (Λ)s∗ (25)

= BDT (Λ)s∗ (26)

where B =
(
H̃T ⊗ H̃H

)
G. Note that B is a Q2×Ps matrix

and is independent of both array rotation and fluctuations in the
sound field. This time-invariance means it can be calculated
once for a given array manifold. As a result, for a given array
manifold, the cost of calculating Rx from (26) is independent
of Ph, the number of SH coefficients used to describe the array
manifold.

An online algorithm for estimating G based on an
exponentially-weighted least squares (EWLS) cost function is
proposed in [19]. The exponential weighting factor, 0 < λ ≤
1, controls the adaptation rate with values closer to 1 causing
the parameter estimates to change more slowly.

V. EVALUATION

In this section, simulation experiments are reported which
demonstrate the efficacy of the proposed method in comparsi-
son to conventional signal dependent and independent meth-
ods, highlighting in particular the case when array rotation is
in response to desired source activity.

A. Experiment setup

The array manifold in (8), hq(ν,Ω), for an array of micro-
phones on the surface of a rigid sphere with radius 9 cm is
calculated analytically using a SH expansion [23], [24]. The
expansion order is set to 16, which ensures the worst case
reconstruction error across all frequencies considered is less
than −80 dB. The microphones are equally spaced on a circle,
20◦ above the horizontal plane. Experiments 1 to 3 use Q = 4
microphones while Experiment 4 uses both Q = 4 and also
Q = 16 to investigate the effect of varying Q.
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A sound field with known spatial distribution is simulated
directly in the time-frequency (TF) domain using independent
zero-mean circularly-symmetric Guassian noise signals inci-
dent from 578 directions. These directions form a spherical
sampling quadrature grid supporting SH decomposition up to
order 16. Using (8) discretized according to the quadrature
grid, the power of each plane wave is given by s(Ωi), as in
(21).

Sensor noise is simulated by adding independent zero-
mean circularly-symmetric Gaussian noise to each microphone
signal. The sensor noise power at each microphone is drawn
from a Gaussian distribution with mean fixed at −20 dB
with respect to the acoustic noise power, averaged over all
microphones, and variance equal to 10 % of the mean. The
simulations therefore represent a typical use case where the
received signals are dominated by acoustic noise and the
sensor noise is similar, but not identical, across microphones.

The rotation sequence and speech absence state, H0(�),
are chosen to reflect a situation in which array rotation is
in response to desired source activity. Rotation of the array
is implemented according to piecewise-constant trajectories
so that frames in which a change in the array orientation
occurs are clearly identifiable. The first four orientations have
deterministic yaw angles, {0◦, 30◦, 60◦, 90◦} while pitch and
roll are stochastic, as in sequence 2. In the final orientation,
roll, pitch and yaw are all 0◦. Each orientation is held for
250 frames. Whenever H0(�) = 1 the proposed method and
the conventional method use noise-only microphone signals
to update the estimated NCM. Whenever H0(�) = 0, the
conventional method does not update but, in contrast, the pro-
posed method uses the previously estimated NPD to estimate
the NCM from the current array orientation. For � ≤ 950,
H0(�) = 1 while for � > 950, H0(�) = 0.

The proposed method requires a measurement of the array
orientation and H0(�) at each frame. Errors in the yaw, pitch
and roll components of the measured array orientation are
simulated as independent identically-distributed zero-mean,
additive Gaussian noise with standard deviation, σIMU = 1◦

while oracle values of H0(�) are used.
The power distribution of the synthesized sound fields have

an axially-symmetric cardioid shape

s(Ω) = (1/2)Ns(1 + cos(Ω− Ω0))
Ns (27)

where Ω0 is the direction of the maximal response and Ns is
the order, where higher-order cardioids concentrate the energy
over a narrower region. In each experiment, evaluations are
conducted for 20 different sound fields, each with Ω0 aligned
to one of the faces of an icosahedron. An oracle voice activity
detector (VAD) is used to determine the speech absence state,
H0(�).

The implementation of the proposed method uses a single
parameter to describe the sensor noise, which intentionally
introduces a mismatch compared with the simulated condi-
tions. Except where otherwise stated, Nh = 15 (from which
Ph = (Nh + 1)2 = 256), the frequency is 2200 Hz and
(1− λ) = 1× 10−5.

B. Metrics and baseline approaches

The error in the estimated NCM is assessed as the Frobenius
norm of the scale-invariant error

E(�) = min
�

‖Rv(�)− 
R̂v(�)‖F (28)

where Rv(�) is defined in (3) and 
 is used as in [25], to make
the metric independent of an arbitrary scaling factor. This
independence of scale allows direct comparison with the fixed-
scale model covariance matrices used as baselines, described
below.

The NCM estimation accuracy is also evaluated in terms of
the noise reduction, γ, obtained using an MVDR beamformer
[26] according to

γ =
1

LQ

∑
�∈L

vH(�)v(�)

|Z(�)|2 (29)

where Z(�) is the beamformer output. The MVDR steering
vector is h(Ω) =

[
h1(Ω) . . . hQ(Ω)

]T
and the look

direction is fixed in array coordinates to Ω = (90◦, 0◦), that
is, towards the front of the array. The oracle beamformer,
designed using the ground truth NCM, defines the best case
performance. The excess noise level, Δγ, of a beamformer
is the amount by which the noise power at the output of a
beamformer exceeds that of the oracle beamfomer.

For comparison, results are also reported for two typical
noise covariance models and a conventional estimation ap-
proach. The spatially white model [2], [3], denoted ‘White’,
assumes uncorrelated noise at each microphone. Further as-
suming that the variance is the same at each microphone and
exploiting the scale-invariant error metrics, the spatially white
NCM is the identity matrix.

The spherically isotropic model [4], [5], denonted ‘Sph iso’,
assumes the power incident from all directions is the same and
so (26) reduces to

r̂iso(�) ∝ H̃HH̃ . (30)

The recursive smoothing approach [10], denoted ‘RS’, up-
dates the estimated NCM according to

r̂rs(�) = (1− α) r̂rs(�− 1) + αv(�)vH(�) (31)

only when H0(�) = 1. The smoothing factor, α, controls the
trade off between tracking changes in rv(�) and the variance of
the estimate. Results are shown for α ∈ {1, 5, 10, 50, 100} ×
10−3.

C. Results

Fig. 1 shows the convergence of E(�) for the conventional
RS method, denoted ‘RS: α’, and the proposed method,
denoted ‘EWLS: (1 − λ)’, over a range of time constants.
As a baseline, the error in the estimated NCM is −11.1 dB
for ‘White’ and −11.4 dB for ‘Sph iso’. For RS, the minimum
error is obtained with α = 5× 10−3. In this case, on each
orientation change, there is a large increase in E(�) before
quickly converging again. The problem with the conventional
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Fig. 1. Noise covariance error over time for (left) recursive smoothing (RS) and (right) proposed method (EWLS) with different time constants. Error using
signal independent models, ‘White’ and ‘Sph iso’ also shown for comparison. Shaded region indicates H0(�) = 0. Overlayed arrows indicate yaw component
of array rotation, which is stepped every 250 frames in sequence {0◦, 30◦, 60◦, 90◦, 0◦}.

method is clearly demonstrated at � = 1001, where the
orientation changes but, because H0(�) = 0, the estimate
cannot be updated. The error in the estimated noise covariance
during desired source activity is −9.5 dB which is larger than
for the straightforward model-based estimates.

For the proposed method with (1−λ) ≤ 1e−3, convergence
is insensitive to the choice of λ with no visible difference
over three orders of magnitude. Crucially, at � = 1001 when
H0(�) = 0 and the orientation changes, there is no increase
in E(�). The proposed method therefore achieves 18 dB lower
error than the RS approach.

The fundamental difference between the two approaches is
that the proposed method adapts to the properties of the noise
field in world coordinates and so the choice of λ depends only
on how quickly the NPD changes whereas the RS method must
adapt to changes in the observation of the noise field through
the microphone signals in array coordinates and so α must be
chosen to allow for more rapid adaptation.

The effectiveness of MVDR beamforming depends on the
number of microphones. As the number of microphones in-
creases, so does the sensitivity to inaccuracies in the NCM.
The effect of model mismatch between the estimation order,
Nŝ, and the true NPD order, Ns, is investigated for arrays
with Q = 4 and Q = 16 microphones. Fig. 2(a) shows the
excess noise, Δγ, for the same Q = 4 microphone array as in
Figure 1. As the noise field becomes more directional there is
a small increase in γ obtained using the oracle beamformer,
9.2 dB to 9.7 dB. The proposed method achieves the best
performance of Δγ ≤ 0.05 dB over all Ns and Nŝ. This
implies that choosing Nŝ �= Ns does not have a detrimental
effect on the beamforming performance.

In contrast, the RS method with best-case smoothing pa-
rameter, α = 5× 10−3, achieves Δγ = 0.16 dB for Ns = 1,
rising to Δγ = 0.66 dB for Ns = 4. That is, as the sound
field becomes more directional, the 0.5 dB improvement in
the oracle beamformer’s noise reduction is not matched when
using the RS estimate of the NCM. Using either a spatially
white or spherically isotropic model of the noise field achieves

9.24 9.39 9.54 9.68
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Fig. 2. Excess noise power, Δγ, of MVDR beamformer with (top) Q = 4
and (bottom) Q = 16 with different noise covariance estimation methods,
averaged over 20 Ns-order cardioid-shaped noise fields. Results are grouped
by the true NPD order, Ns. The noise reduction, γ, obtained from an oracle
MVDR beamformer is shown above each group. Labels for White, Sph iso and
RS methods are as for Fig. 1. Labels for the proposed method with different
estimation orders are denoted ‘EWLS: Nŝ’.

0.05 dB to 0.16 dB more noise reduction than the best RS
estimate.

Fig. 2(b) shows the beamforming performance when the
number of microphones is increased to 16. The oracle beam-
former can better match the beam pattern to the power
distribution of the noise field than with 4 microphones and so
more noise reduction is acheived (15.57 dB to 17.71 dB), with
the benefit increasing with Ns. With the proposed method,
provided Nŝ ≥ Ns, performance very close to that of the
oracle beamformer is acheived, with Δγ ≤ 0.18 dB. With RS
the best-case excess noise rises from 0.43 dB for Ns = 1 to
1.28 dB for Ns = 4. Since with Q = 16 there are more degrees
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of freedom, the effect of undermodelling is more severe than
for Q = 4. This is true for the spatially white model –
which does not account for the cross-terms in the NCM or the
intersensor variations in noise power – the spherically isotropic
model – which does not account for the directional variation in
the NPD and ignores the sensor noise – and for the proposed
method with Nŝ < Ns. The spatially white assumption is
the most robust since, by not modelling the interchannel
correlations, it also does not attempt to exploit them in the
noise reduction. This leads to 3.10 dB to 4.55 dB more residual
noise than the oracle beamformer. In contrast, the effect of
errors due to the spherically isotropic assumption and the
undermodelled proposed method degrade the beamformer by
7.46 dB to 9.60 dB and 7.04 dB to 11.25 dB, respectively.

VI. CONCLUSION

A model for non-isotropic directionally-uncorrelated noise
has been proposed based on a SH decomposition of the sound
field. An analytical expression for the noise covariance matrix
is obtained directly from the proposed model using knowledge
of the array manifold and the array orientation. An algorithm
for estimating the parameters of the proposed model has been
proposed and validated on simulated noise fields with realistic
levels of microphone sensor noise. The approach is particularly
suited to situations in which changes in array orientation in
response to and during desired source activity are expected. In
this context, the proposed method achieves 18 dB lower error
in the estimated noise covariance matrix than the conventional
recursive averaging approach, and noise reduction which is
within 0.05 dB of an oracle beamformer using the ground truth
noise covariance matrix.
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