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Abstract—Recently we presented a modulation-domain multi-
channel Kalman filtering (MKF) algorithm for speech enhance-
ment, which jointly exploits the inter-frame modulation-domain
temporal evolution of speech and the inter-channel spatial correla-
tion to estimate the clean speech signal. The goal of speech enhance-
ment is to suppress noise while keeping the speech undistorted,
and a key problem is to achieve the best trade-off between speech
distortion and noise reduction. In this paper, we extend the MKF by
presenting a modulation-domain parametric MKF (PMKF) which
includes a parameter that enables flexible control of the speech
enhancement behaviour in each time-frequency (TF) bin. Based on
the decomposition of the MKF cost function, a new cost function
for PMKF is proposed, which uses the controlling parameter to
weight the noise reduction and speech distortion terms. An optimal
PMKF gain is derived using a minimum mean squared error
(MMSE) criterion. We analyse the performance of the proposed
MKF, and show its relationship to the speech distortion weighted
multichannel Wiener filter (SDW-MWF). To evaluate the impact
of the controlling parameter on speech enhancement performance,
we further propose PMKF speech enhancement systems in which
the controlling parameter is adaptively chosen in each TF bin.
Experiments on a publicly available head-related impulse response
(HRIR) database in different noisy and reverberant conditions
demonstrate the effectiveness of the proposed method.

Index Terms—Kalman filtering, microphone arrays, modulation
domain, speech distortion, speech enhancement.

I. INTRODUCTION

S PEECH quality and intelligibility can be severely degraded
by additive acoustic noise, and the importance of speech

enhancement has been increasingly recognized due to the wide
use of speech processing systems such as hearing aids, robotics
and smart home devices in noise. Compared with single-channel
speech enhancement which relies on the noisy observation from
a single microphone, microphone array based multichannel
speech enhancement has attracted much attention since the
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spatial information of the acoustic environment can additionally
be exploited to improve performance.

Conventional multichannel speech enhancement methods can
be categorized according to whether they are based on beam-
forming [1]–[6], post-filtering [7]–[10], generalized sidelobe
cancelling (GSC) [11], [12], or multichannel Wiener filtering
(MWF) [13]–[16]. These methods generally design an opti-
mal filter by exploiting the spatial correlation between mul-
tiple microphone signals, in order to estimate a single target
signal. Based on the steering vector or the relative transfer
function (RTF) which characterises the spatial correlation, fixed
beamformers such as delay-and-sum (DS) [17], and adaptive
beamformers such as minimum variance distortion response
(MVDR) [2], [4], [6] and linearly constrained minimum variance
(LCMV) [5], can be viewed as spatial filters that extract the
signal from the target direction and attenuate the noise from
other directions. In post-filtering [7]–[10] and GSC [11], [12],
single-channel noise reduction and multi-channel adaptive noise
cancellation (ANC) are used to further reduce the residual noise
in the beamforming output. It is shown in [11] that the GSC
can be expressed as an unconstrained form of the LCMV beam-
former. Although the MWF [13]–[16] does not explicitly rely on
knowledge of the steering vector or RTF, it jointly uses the spatial
covariance matrices of the noise and mixture signals to implicitly
resolve the spatial information of the target. It is demonstrated
in [7] that, for a single source, the MWF can be expressed as an
MVDR beamformer followed by a single-channel Wiener filter.
In addition, it is shown in [18] and [19] that many conventional
multichannel filters such as MVDR, LCMV and MWF, are
special cases of the variable span filters, which formulates the
filter in terms of subspaces defined by the joint diagonalization
of the speech and noise covariance matrices.

The temporal statistics of speech have also been exploited in
conventional approaches including adaptive beamformers, post-
filtering, GSC and MWF to derive optimal spatio-temporal filters
under various criteria. However, these methods use the second-
order-statistics (SOS) of the speech and noise to compute the
statistical optimal filter, which inherently assumes the speech
to be short-time stationary. Therefore, the short-time temporal
evolution of speech is not considered. In fact, the speech signals
in successive frames are correlated and are typically modelled as
an auto-regressive (AR) process [20]. In the multichannel case,
the inter-channel spatial correlation and inter-frame temporal
correlation of speech can be jointly used to estimate the clean
speech.
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Many methods [21]–[39] have been proposed to incorporate
the temporal evolution of speech into Kalman filtering (KF)
for single-channel speech enhancement. Time-domain methods
were developed in [21]–[25], and [22] demonstrated improved
quality and intelligibility in both metric and listener-based
evaluation, by using a codebook approach to estimate the AR
coefficients of speech. Subband processing was used to reduce
the order of AR models of speech [26]–[28], and the idea was ex-
tended to the short-time Fourier transform (STFT) domain pro-
cessing [29] which models the temporal evolution of the complex
STFT coefficients in each frequency bin. It was found that the
phases in successive STFT frames are almost uncorrelated [29],
thus in [30], the same authors chose to model only the evolution
of STFT amplitudes in KF. Similarly, modulation-domain KF
(MDKF) based methods have been proposed [31]–[39] in which
the time-varying amplitude of each frequency bin is regarded as
a modulation signal in its own right.

Inspired by these previous single-channel KF based speech
enhancement methods, we proposed a modulation-domain mul-
tichannel Kalman filtering (MKF) speech enhancement method
in [40], [41] that jointly exploits both the inter-channel spatial
correlation and the inter-frame temporal correlation of speech.
Based on the temporal evolution model of speech in the modula-
tion domain, an STFT-domain linear prediction (LP) estimate is
obtained by first performing LP in the modulation domain, and
then inserting the phase from the MVDR beamformer output.
Under the minimum mean squared error (MMSE) criterion, an
optimal MKF gain is derived to combine the STFT-domain LP
estimation and multichannel noisy observations for estimating
the clean target signal. It is shown in [41] that the MKF becomes
the MWF if the LP information is not incorporated, and by using
the phase of the MVDR to approximate the phase of the clean
speech, the MKF is equivalent to a concatenation of an MVDR
beamformer and a single-channel MDKF.

An important problem of speech enhancement is to com-
promise between the noise reduction and the speech distor-
tion. Although multichannel speech distortionless filters such
as MVDR [2], [4], [6] and LCMV [5] beamformers can be
derived, more aggressive noise reduction still gives rise to speech
distortion in the output signal. However, the trade-off behaviour
varies for different algorithms, and it is possible to obtain
substantially improved noise reduction by accepting a limited
amount of additional speech distortion [42], [43].

The requirements for noise reduction and speech distortion
always vary between different applications and even between
time-frequency (TF) bins for STFT-domain methods. For ex-
ample, an algorithm might perform aggressive noise reduction
in noise-dominated TF bins, but limit the speech distortion in
other bins. Multichannel approaches which enable a flexible
control of the trade-off behaviour in individual TF bins have been
developed. The speech distortion weighted MWF (SDW-MWF)
was proposed in [14], [44]; the optimal filter is obtained by
minimizing a speech distortion index while requiring the noise
reduction factor be below a specific threshold, which is related to
a controlling parameter. A spherical harmonic-domain solution
was further presented in [45]. Different variations of SDW-MWF
have also been proposed to determine the controlling parameter

in each TF bin according to voice activity detection (VAD) [46],
conditional speech presence probability (SPP) [47], [48] and
direct-to-reverberation ratio (DRR) [49]. In [18], [19], it was
shown that flexible control of speech distortion and noise re-
duction can also be achieved within the variable span filtering
framework of which the SDW-MWF is a special case.

It has been shown that, to achieve aggressive noise reduction
in noise-dominated TF bins, the SDW-MWF tends to yield a
zero-valued output signal [14], therefore, the speech component
is also eliminated regardless of whether it is actually present,
which leads to speech distortion. According to the analysis
in [41], the MKF can be seen as integrating the temporal evolu-
tion of speech into the conventional MWF, and the optimal MKF
gain weights between the LP estimation of the clean speech
and the noisy observation to yield the output signal. Larger
weight will be given to the LP estimation in noise-dominated
TF bins, thus the speech component can be better preserved in
the MKF output. If we design the trade-off filter based on MKF,
the speech distortion can be better controlled when achieving
noise reduction.

In this paper, a modulation-domain parametric MKF (PMKF)
is proposed that extends the MKF. Based on the decomposition
of the MKF cost function, a new cost function for PMKF is
proposed, which uses a controlling parameter to weight the
noise reduction and speech distortion related terms in the MKF
cost function. An optimal PMKF gain is derived under the
minimum mean squared error (MMSE) criterion. We analyse
the performance of the proposed PMKF and show its relation
to the speech distortion weighted multichannel Wiener filtering
(SDW-MWF). It is shown that, by exploiting the speech evo-
lution, the PMKF can always yield lower residual noise than
the SDW-MWF when achieving the same amount of speech
distortion. To evaluate the impact of the controlling parameter
on the speech enhancement performance, we conduct exper-
iments on a publicly available head-related impulse response
(HRIR) database in different noisy and reverberant conditions,
and present experimental results for both fixed and adaptive
controlling parameters to demonstrate the effectiveness of the
proposed method.

This paper is an extension of our previous work in [50]; it gives
a more detailed derivation of the PMKF, shows explicitly how
the controlling parameter affects the speech distortion and noise
reduction, and conducts more comprehensive experimental eval-
uations. The remainder of the paper is organized as follows. In
Section II, the signal model and assumptions are introduced.
We review the previously proposed MKF in Section III, and
derive the proposed PMKF in Section IV. The trade-off effect
of PMKF on noise reduction and speech distortion is analysed in
Section V and are compared with the SDW-MWF. The experi-
mental results are shown in Section VI and we draw conclusions
in Section VII.

II. SIGNAL MODEL

We consider a noisy and reverberant environment with a single
target speech source and an M -element microphone array. The
complex STFT-domain M × 1 noisy signal vector in the n-th
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frame and k-th frequency bin can be expressed as

y(n, k) = x(n, k) + v(n, k), (1)

where y(n, k) = [Y1(n, k), Y2(n, k), . . . , YM (n, k)]T is the
noisy signal vector, in whichYm(n, k) is the STFT-domain noisy
signal of the m-th microphone. The vectors x(n, k) and v(n, k)
are defined similarly to denote the target reverberant speech and
noise, respectively. If the RIR is longer than the analysis window,
the late reverberation is treated as a component of v(n, k), and
is assumed to be uncorrelated with direct-path signal and early
reflections (see e.g. [51], [52]). We also assume that the speech
and additive noise signals are uncorrelated.

The noisy signal vector, y(n, k), can be rewritten with respect
to a reference signal S(n, k), as

y(n, k) = d(k)S(n, k) + v(n, k), (2)

where d(k) = [D1(k), D2(k), . . . , DM (k)]T , and is the
acoustic transfer function (ATF) vector if S(n, k) is the speech
source, or the relative transfer function (RTF) vector [53] with
respect to the first channel if S(n, k) = X1(n, k). Because gen-
erally the RTF is shorter than the ATF when using a compact
array, and the RTF can be estimated in noise by methods such
as [54], [55], we take S(n, k) = X1(n, k) and denote d(k) as
the RTF in this paper, then Dm(k) = Xm(n, k)/X1(n, k) for
m = 1, 2, . . .,M , and D1(k) = 1. Similar to the beamforming,
GSC and post-filtering methods, it is assumed here that the RTF
vector is known or has been estimated. In this paper we only
consider the noise reduction problem, and take X1(n, k) as the
target. We do not explicitly perform dereverberation unless when
the RIR is longer than the analysis window, X1(n, k) is the
mixture of direct-path signal and early reverberation.

III. MKF FOR SPEECH ENHANCEMENT

We proposed a modulation-domain MKF in [40], [41] that
exploits both the temporal evolution of speech and the spatial
correlation between multiple microphones for speech enhance-
ment. Modulation-domain processing treats the time-varying
amplitude envelope in each frequency bin as a time-domain
signal, and has been widely used for single-channel KF based
speech enhancement [31]–[39] due both to its psychoacoustic
and physiological significance [56], [57] and to the fact that
the temporal correlation is mainly manifested in the magnitude
spectrum [29].

Following the framework of conventional KF [58], the MKF
first obtains an LP estimation of the hidden state, which rep-
resents the clean speech signal, and then updates the state by
exploiting the multichannel noisy observation which contains
the spatial information. It is not possible to use a conventional KF
to estimate the state vector, because the temporal evolution and
the spatial information are exploited in the modulation domain
and the STFT domain respectively, and the mapping between
these two domains is non-linear. An MKF which iteratively
performs optimal LP estimation and state update in both domains
was derived in [41], and its details will be briefly reviewed in this
section, as it provides the foundation for the proposed PMKF
given in Section IV.

A. State-Space Model

The MKF utilizes a measurement model and a P -order LP
model to describe respectively the relationship between the
target and observation, and the temporal speech evolution.

Based on the signal model in (2), the STFT-domain multichan-
nel observation model can be defined as a function of the P ×
1 state vector x1(n, k) = [X1(n, k) X1(n− 1, k) . . . X1(n−
P + 1, k)]T :

y(n, k) = d(k)X1(n, k) + v(n, k)

= d(k)uTx1(n, k) + v(n, k)

= Q(k)x1(n, k) + v(n, k), (3)

where Q(k) = d(k)uT is an M × P measurement matrix, and
u = [1 0 . . . 0]T is a P × 1 vector.

We temporarily neglect the spatial information and define the
LP model in terms of the modulation-domain signal, |X1(n, k)|,
of the reference channel. The modulation-domain P -order LP
model is formulated as:

a1(n, k) = B(k)a1(n− 1, k) + uW (n, k), (4)

where a1(n, k) = [A1(n, k), A1(n− 1, k), . . . , A1(n− P +
1, k)]T is the magnitude vector of the first channel with
A1(n, k) = |X1(n, k)|. B(k) is a speech transition matrix de-
fined as [41],

B(k) =

⎡
⎢⎢⎢⎢⎢⎣
−b1,k −b2,k . . . −bp−1,k −bp,k
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦ , (5)

where bp,k for p = 1, 2, . . ., P are the LP coefficients [53] in the
k-th frequency bin, andW (n, k) is the LP residual with variance
σ2
W .
In practice, B(k) and σ2

W are unknown and are estimated via
LP analysis of the modulation frames [31], [37]. We perform
MWF pre-processing to obtain an output Z1(n, k). Then, us-
ing the autocorrelation method [59], the LP coefficients of the
modulating signal in each frequency bin are estimated using the
magnitude of Z1(n, k). The MWF pre-processing is realized as
an MVDR beamformer followed by a single-channel Wiener
post-filter [60].

The frequency index, k, will be omitted from the rest of the
paper for clarity. We note that whereas u is a constant vector,
both the RTF,d, and the measurement matrix,Q, are frequency-
dependent.

B. MKF Solution

A block diagram of the MKF is shown in Fig. 1. Given the
LP model, an a priori STFT-domain LP estimate x̂1(n|n− 1)
is obtained, by first performing LP in the modulation domain,
and then transforming the modulation-domain LP estimation
into the STFT domain after integrating the phase information
Φ̂(n). By incorporating the multichannel noisy observations, the
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Fig. 1. MKF framework.

STFT-domain optimal MKF gain is derived under the MMSE
criterion to update the STFT-domain state vector.

1) STFT-Domain Lp: Given the STFT-domain MMSE esti-
mation of the clean speech in the previous frame, x̂1(n− 1|n−
1), the “predict” block estimates the amplitude of the state vector
in the current frame according to (4) as:

â1(n|n− 1) = Bâ1(n− 1|n− 1), (6)

where â1(n− 1|n− 1) is a P × 1 vector containing the mag-
nitude of each element of x̂1(n− 1|n− 1).

We next obtain the STFT-domain LP estimation by imposing
the phase of the MWF pre-processed output, z1(n), as

x̂1(n|n− 1) = Φ̂(n)â1(n|n− 1), (7)

where Φ̂(n) is a diagonal phase matrix containing the complex
exponential phase of z1(n).

2) STFT-Domain Update: In the “update” block of Fig. 1, the
STFT-domain state vector is updated by linearly combining the
estimates from the STFT-domain LP and from the multichannel
noisy observations as:

x1(n|n) = x1(n|n− 1) +G(n)[y(n)−Qx1(n|n− 1)],
(8)

where G(n) is the MKFs gain matrix with dimension P ×M .
To determine the optimal MKF gain matrix, we define the

error signal vector e1(n|n) between the updated state vector
x1(n|n) and clean speech vector x1(n). Based on (8), we have

e1(n|n)
= x1(n|n)− x1(n)

= x1(n|n− 1)− x1(n) +G(n)[y(n)−Qx1(n|n− 1)]

= e1(n|n− 1) +G(n)[v(n)−Qe1(n|n− 1)]

= [I−G(n)Q]e1(n|n− 1) +G(n)v(n), (9)

where e1(n|n− 1) is a STFT-domain LP estimation error vector
given by

e1(n|n− 1) = x1(n|n− 1)− x1(n). (10)

By minimizing an MMSE based cost function

JMKF,G(n) = tr[Ree(n|n)], (11)

whereRee(n|n) = E{e1(n|n)eH1 (n|n)} and E{·} is the expec-
tation operator, we obtain the optimal MKF gain ĜMKF(n):

ĜMKF(n)

= Ree(n|n− 1)QH [QRee(n|n− 1)QH +Rvv(n)]
−1,

(12)

whereRee(n|n− 1) = E{e1(n|n− 1)eH1 (n|n− 1)} is the co-
variance matrix of the STFT-domain LP estimation error, and
Rvv(n) = E{v(n)vH(n)} is the multichannel noise covariance
matrix. The Rvv(n) can be estimated by methods described
in, e.g., [49], [61], [62], and the estimation and updating of
Ree(n|n− 1) are given the Section IV-C in [40].

After updating the state vector in the STFT domain, the clean
speech signal of the reference channel is finally estimated as
X̂1(n) = uTx1(n|n).

IV. PROPOSED PMKF FOR SPEECH ENHANCEMENT

A theoretical analysis of the MKF was included in [41] where
it was shown that the MKF can be viewed as incorporating
knowledge of speech evolution into MWF. The MKF gain in
(12) is controlled by the variance of the STFT-domain LP error
and the noise level, and from (8) we can deduce that the output
signal slides between the LP estimation and the estimation from
multichannel noisy observations. The output will approximate
the LP estimate when the noise level is high, and approximate
the observation when the noise level is low, in which case the
multichannel observations are more reliable. By incorporating
the temporal evolution of speech, the noise reduction behaviour
of MKF is different from that of the MWF, which computes the
Wiener gain solely based on the relative level of speech and noise
and, in high-noise scenarios, gives a near-zero gain such that all
signal components are eliminated. Compared with MWF, more
speech information can be preserved by MKF, which yields less
speech distortion.

The trade-off filter for multichannel speech enhancement is
useful since the requirement for speech distortion and noise
reduction varies for different applications, and the trade-off
behaviour in each TF bin can be flexibly controlled. The trade-off
filter can be designed, for instance, by following the principles
of SDW-MWF, or more generally, variable span filtering [18],
[19]. Motivated by the comparison between MKF and MWF,
a PMKF is proposed in this section, which uses a controlling
parameter to select a trade-off between speech distortion and
noise reduction.

A. Cost Function of PMKF

The proposed PMKF utilizes the same state-space model as
the MKF described in Section III-A, which defines the state
vector as the STFT-domain clean signal vector of the reference
channel. It models the temporal evolution of speech in the
modulation domain, but uses an STFT-domain measurement
model to incorporate spatial information.

The PKMF uses the same prediction and equations as the
MKF given in (6), (7) but in the update step, (8), it uses a different
gain matrix, G(n), which is derived below.
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By substituting (1) into (8), the output signal vector, x1(n|n),
can be expressed as

x1(n|n) = [I−G(n)Q]x1(n|n− 1) +G(n)[x(n) + v(n)]

= [I−G(n)Q]x1(n|n− 1) +G(n)Qx1(n)

+G(n)v(n), (13)

in which the output vector has been decomposed into a speech-
related component, [I−G(n)Q]x1(n|n− 1) +G(n)Qx1(n),
and a residual noise component, G(n)v(n). The speech-related
component is a linear combination of the STFT-domain LP
estimate and clean speech vector of the reference channel, with
weights that are defined by the matrix G(n)Q.

We now define a speech distortion vector νsd,G(n), to be the
difference between the speech-related component and the target
x1(n), which is the clean speech in the first channel:

νsd,G(n)

= {[I−G(n)Q]x1(n|n− 1) +G(n)Qx1(n)} − x1(n)

= [I−G(n)Q][x1(n|n− 1)− x1(n)]

= [I−G(n)Q]e1(n|n− 1), (14)

which is actually the first term of the STFT-domain error signal
vector e1(n|n) of the MKF in (9).

Since the e1(n|n− 1) is calculated solely from the speech
signal, based on the assumption that the speech and noise
are uncorrelated, we use (9) to rewrite the MMSE based cost
function for MKF in (11) as

JMKF,G(n) = tr{[I−G(n)Q]Ree(n|n− 1)[I−G(n)Q]H}︸ ︷︷ ︸
Jx[G(n)]

+ tr{G(n)Rvv(n)G
H(n)}︸ ︷︷ ︸

Jv [G(n)]

, (15)

where Jx[G(n)] and Jv[G(n)] represent the speech distortion
and the residual noise in the MKF output, respectively.

In order to trade off between the speech distortion and noise
reduction, now we propose a new MMSE based cost function
for the PMKF, as a weighted combination of Jx[G(n)] and
Jv[G(n)],

JPMKF,G(n) = Jx[G(n)] + λJv[G(n)], (16)

where λ > 0 is the controlling parameter of PMKF. Comparing
with (15), it can be seen that when λ = 1, the cost function of
PMKF is identical to the MKF. If λ > 1, more emphasis will be
given to noise reduction, and if λ < 1, more emphasis will be
given to controlling the speech distortion.

B. PMKF Solution

The optimal PMKF gain matrix is obtained by minimizing
the PMKF cost function JPMKF,G(n) with respect to G(n) to
obtain [63]

ĜPMKF(n) = arg minG(n)JPMKF,G(n)

= Ree(n|n− 1)QH [QRee(n|n− 1)QH + λRvv(n)]
−1.
(17)

It can be seen that the PMKF gain matrix has a similar form to
the MKF gain matrix in (12), but now incorporates a parameter,
λ, to control the trade-off between speech distortion and noise
reduction.

From the identity Q = duT in (3), we can write,

QRee(n|n− 1)QH = σ2
e(n|n− 1)ddH , (18)

where

σ2
e(n|n− 1) = E{E1(n|n− 1)E∗

1(n|n− 1)}
= uTRee(n|n− 1)u (19)

is the first diagonal element of Ree(n|n− 1), and

E1(n|n− 1) = uT e1(n|n− 1) (20)

is the first element of the STFT-domain LP error vectore1(n|n−
1). Thus, QRee(n|n− 1)QH is a rank-one matrix, and the
matrix that is inverted in (17) will be close to singular when
λ is small or the noise level is low. The same numerical problem
also occurs when computing the MKF gain matrix in (12).

To avoid this numerical problem, in the implementation of all
algorithms, we compute the inverse of a matrix P = UΛVH

based on the singular value decomposition, as P−1 = VΛ̄UH .
Here Λ̄ is a diagonal matrix whose i-th diagonal element is
1/Λi,i if |Λi,i| > maxi{|Λi,i|} × ζ, and is 0 otherwise. The
Λi,i is the i-th diagonal element of Λ, and in practice, ζ can be
chosen according to the uncertainty of the RTF vector d.

The optimal PMKF gain matrix ĜPMKF(n) is substituted into
(8) to update the state vector, and the covariance matrix of the
STFT-domain LP estimation errorRee(n|n− 1) is also updated
using ĜPMKF(n) based on Section IV. C of [41]. Finally, as
in [41], the clean speech of the reference channel is estimated
as X̂1(n) = uTx1(n|n).

V. PERFORMANCE ANALYSIS

The performance of the proposed PMKF will be analysed
in this section. First we show how the controlling parameter λ

in PMKF affects the speech distortion and noise reduction of
the PMKF output. Then we compare the proposed PMKF with
the SDW-MWF [14], [44], which similarly uses a parameter
to control the trade-off between speech distortion and noise
reduction, but is derived in a Wiener filtering framework.

A. Effect of Controlling Parameter on Speech Distortion

Since the output of the PMKF is calculated by X̂1(n) =
uTx1(n|n), and the target signal is X1(n) = uTx1(n), the
speech distortion signal of the PMKF output, εsd,PMKF(n), is
defined as the first element of the speech distortion vector in
(14):

εsd,PMKF(n) = uTνsd[ĜPMKF(n)]

= uT [I− ĜPMKF(n)Q]e1(n|n− 1)

= E1(n|n− 1)− uT ĜPMKF(n)Qe1(n|n− 1),
(21)

where E1(n|n− 1) is defined in (20).
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We now consider the second term in the right side of (21).
Substituting for GPMKF(n) using (17), (18) and the identity
uTd = 1, we obtain

uT ĜPMKF(n)Qe1(n|n− 1)

= (uTd)uTRee(n|n− 1)QH

× [σ2
e(n|n− 1)ddH + λRvv(n)]

−1Qe1(n|n− 1)

= uTσ2
e(n|n− 1)ddH

× [σ2
e(n|n− 1)ddH + λRvv(n)]

−1duT e1(n|n− 1)

= σ2
e(n|n− 1)dH [σ2

e(n|n− 1)ddH

+ λRvv(n)]
−1dE1(n|n− 1). (22)

According to the Sherman-Morrison-Woodbury formula [64],

[σ2
e(n|n− 1)ddH + λRvv(n)]

−1

= λ−1R−1
vv (n)−

λ−2σ2
e(n|n− 1)R−1

vv (n)dd
HR−1

vv (n)

1 + λ−1σ2
e(n|n− 1)dHR−1

vv (n)d
,

(23)

then

dH [σ2
e(n|n− 1)ddH + λRvv(n)]

−1d

= λ−1dHR−1
vv (n)d

− λ−2σ2
e(n|n− 1)dHR−1

vv (n)dd
HR−1

vv (n)d

1 + λ−1σ2
e(n|n− 1)dHR−1

vv (n)d

=
λ−1dHR−1

vv (n)d

1 + λ−1σ2
e(n|n− 1)dHR−1

vv (n)d
. (24)

Note that

dHR−1
vv (n)d = σ−2

Vo,MVDR
(n), (25)

where σ2
Vo,MVDR

(n) is the variance of the residual noise in the
MVDR beamformer output [see [41] Eq. (43)]. Thus (24)
becomes

dH [σ2
e(n|n− 1)ddH + λRvv(n)]

−1d

=
λ−1σ−2

Vo,MVDR
(n)

1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)

. (26)

Substituting (26) into (22), the speech distortion signal in (21)
is now expressed as

εsd,PMKF(n)

= E1(n|n− 1)− λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)E1(n|n− 1)

1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)

=
E1(n|n− 1)

1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)

. (27)

The variance of the speech distortion signal, σ2
sd,PMKF(n), is

given by

σ2
sd,PMKF(n)

= E{εsd,PMKF(n)ε
∗
sd,PMKF(n)}

=
σ2
e(n|n− 1)

[1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)]2

=

[
λσ2

Vo,MVDR
(n)

λσ2
Vo,MVDR

(n) + σ2
e(n|n− 1)

]2

σ2
e(n|n− 1)

= [1− gPMKF(n)]
2σ2

e(n|n− 1), (28)

where

gPMKF(n) =
σ2
e(n|n− 1)

λσ2
Vo,MVDR

(n) + σ2
e(n|n− 1)

(29)

is a single-channel Wiener-type gain which is defined according
to the noise level of the MVDR output and the variance of
STFT-domain LP error, and is also affected by the controlling
parameter λ of the PMKF.

In (28) we express the speech distortion in the PMKF output
as a monotonic function of the controlling parameter λ. It can be
seen that σ2

sd,PMKF(n) → 0 when λ → 0, indicating that there is
no distortion in the output signal. This is consistent with the cost
function design in (16) that decreasing the controlling parameter
gives more emphasis on limiting the speech distortion. When
λ → +∞, we have σ2

sd,PMKF(n) → σ2
e(n|n− 1), in this case,

the speech distortion is only caused by STFT-domain LP error.
Since λ ≥ 0, it follows that 0 < gPMKF(n) ≤ 1, and the speech

distortion variance in (28) is always smaller than σ2
e(n|n− 1).

Therefore, by incorporating the noisy observations, the speech
distortion is always reduced in the update step of PMKF. We can
further deduce that, if the STFT-domain clean speech signal can
be precisely estimated in the LP step, which makes σ2

e(n|n−
1) = 0, the PMKF will yield an output signal without any speech
distortion.

It can be also seen from (28) that the noise level affects the
distortion of the PMKF output. In high-noise cases, according
to (26), the large elements of Rvv leads to a large value of
σ2
Vo,MVDR

(n), which further decreases gPMKF(n), and finally yields
a large speech distortion in (28). However, by introducing the
parameter λ, the speech distortion behaviour of PMKF can now
be flexibly controlled.

B. Effect of Controlling Parameter on Noise Reduction

To examine the noise reduction performance, we calculate the
residual noise in the PMKF output. From (13), with the optimal
PMKF gain matrix, the residual noise in the PMKF output is
expressed as

Vo,PMKF(n) = uT ĜPMKF(n)v(n). (30)

Similar to the derivation in (22), applying (23) and (25), we
have

Vo,PMKF(n)

= uTQRee(n|n− 1)QH

× [σ2
e(n|n− 1)ddH + λRvv(n)]

−1v(n)

= uTσ2
e(n|n− 1)ddH [λ−1R−1

vv (n)
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− λ−2σ2
e(n|n− 1)R−1

vv (n)dd
HR−1

vv (n)

1 + λ−1σ2
e(n|n− 1)dHR−1

vv (n)d
]v(n)

= λ−1σ2
e(n|n− 1)dHR−1

vv (n)v(n)

− λ−2σ−2
Vo,MVDR

(n)σ4
e(n|n− 1)

1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)

dHR−1
vv (n)v(n)

=
λ−1σ2

e(n|n− 1)

1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)

dHR−1
vv (n)v(n). (31)

Then the variance of the residual noise Vo,PMKF(n) is com-
puted as

σ2
Vo,PMKF

(n)

= E{Vo,PMKF(n)V
∗
o,PMKF(n)}

=

[
λ−1σ2

e(n|n− 1)

1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)

]2

× dHR−1
vv (n)E{v(n)vH(n)}R−1

vv (n)d

=

[
λ−1σ2

e(n|n− 1)

1 + λ−1σ−2
Vo,MVDR

(n)σ2
e(n|n− 1)

]2

σ−2
Vo,MVDR

(n)

=

[
σ2
e(n|n− 1)

λσ2
Vo,MVDR

(n) + σ2
e(n|n− 1)

]2

σ2
Vo,MVDR

(n)

= g2PMKF(n)σ
2
Vo,MVDR

(n). (32)

The result in (32) reveals the relationship between the noise
reduction performance between the PMKF and the MVDR
beamformer. Since gPMKF(n) < 1, in PMKF, the residual noise
is further suppressed by applying a gain gPMKF(n) to the MVDR
output. When λ → +∞, which corresponds to aggressive noise
reduction, gPMKF(n) → 0, and the variance of the residual noise
decreases to 0, indicating all noise components are suppressed.
When decreasing λ to 0, gPMKF(n) gradually increases to 1,
which attenuates less noise and finally yields the MVDR output.

According to (29) we further define λ̃PMKF(n) =
σ2
e(n|n−1)

Vo,MVDR(n)
,

then gPMKF(n) becomes

gPMKF(n) =
1

λ/λ̃PMKF(n) + 1
, (33)

and the speech distortion and noise reduction performances
expressed in (28) and (32) are rewritten as

σ2
sd,PMKF(n)

σ2
e(n|n− 1)

=

(
λ/λ̃PMKF(n)

λ/λ̃PMKF(n) + 1

)2

, (34)

σ2
Vo,PMKF

(n)

σ2
Vo,MVDR

(n)
=

(
1

λ/λ̃PMKF(n) + 1

)2

. (35)

Based on (34) and (35), the speech distortion and noise
reduction performances of PMKF are illustrated in Fig. 2. When
increasing the controlling parameter λ, the PMKF yields less
residual noise at the expense of more speech distortion. The vari-
ances of speech distortion and noise residual are upper-bounded
by σ2

e(n|n− 1) and σ2
Vo,MVDR

(n), respectively.

Fig. 2. Illustration of the theoretical trade-off behaviour of PMKF from (34)
and (35).

C. Comparison With SDW-MWF

1) Relationship to SDW-MWF: We now first consider the
relationship between the PMKF and the SDW-MWF presented
in [14], [44]. The SDW-MWF is expressed as

hSDW-MWF(n) = [Rxx(n) + λRvv(n)]
−1Rxx(n)u, (36)

where Rxx(n) = E{x(n)xH(n)} is the speech covariance ma-
trix, and λ controls the trade-off between speech distortion and
noise suppression. With hSDW-MWF(n), the clean speech of the
reference channel is estimated as X̂1(n) = hH

SDW-MWF(n)y(n).
We first show that SDW-MWF can be regarded as a special

case of the PMKF. If the LP information is excluded from the
PMKF by setting the STFT-domain LP estimate x1(n|n− 1) ≡
0, then QRee(n|n− 1)QH in (17) becomes the speech co-
variance matrix Rxx(n) = E{x(n)xH(n)} [41]. The optimal
PMKF gain matrix is substituted into (8) in the update step.
Since uTd = 1, by setting the STFT-domain LP estimate to
zero, the output signal of PMKF is derived as

X̂1(n) = uT ĜPMKF(n)y(n)

= (uTd)uTRee(n|n− 1)QH [Rxx(n) + λRvv(n)]
−1y(n)

= uTQRee(n|n− 1)QH [Rxx(n) + λRvv(n)]
−1y(n)

= uTRxx(n)[Rxx(n) + λRvv(n)]
−1y(n)

= hH
SDW-MWFy(n). (37)

Thus, as with the relationship between MKF and MWF dis-
cussed in [41], the proposed PMKF can be seen as incorporating
the speech evolution over time into SDW-MWF.

2) Trade-Off Performance of SDW-MWF: Since SDW-
MWF is a special case of the PMKF, (28) and (32) can straight-
forwardly be used to derive the speech distortion and noise re-
duction measures of the SDW-MWF. If the LP estimation is dis-
carded, with the definition ofe1(n|n− 1) in (10), we can replace
σ2
e(n|n− 1) by σ2

X1
(n), where σ2

X1
(n) = E{X1(n)X

∗
1(n)}.

According to (28), the variance of speech distortion in the
SDW-MWF output is derived as

σ2
sd,SDW-MWF(n) = [1− gSDW-MWF(n)]

2σ2
X1

(n), (38)
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where

gSDW-MWF(n) =
σ2
X1

(n)

λσ2
Vo,MVDR

(n) + σ2
X1

(n)
. (39)

With (32), the variance of the residual noise in the SDW-MWF
output is given by

σ2
Vo,SDW-MWF

(n) = g2SDW-MWF(n)σ
2
Vo,MVDR

(n). (40)

The effect of the controlling parameter λ on the trade-off
behaviour of SDW-MWF can be analysed from (38) to (40).
It can be seen that increasing λ decreases gSDW-MWF(n), and
further leads to higher speech distortion and lower residual noise.
In the extreme cases, when λ → 0, similar to the PMKF, there
is no speech distortion in the output signal, and the variance
of the residual noise equals to that of the MVDR output. How-
ever, when λ → +∞, gSDW-MWF(n) approaches 0; in this case,
although there is no residual noise in the SDW-MWF output,
the speech component is also 0; in eliminated, it makes the
variance of speech distortion σ2

sd,SDW-MWF(n) equal to σ2
X1

(n).
This is different from the PMKF in which the speech distor-
tion limit equals the STFT-domain LP estimation error. The
trade-off behaviour of SDW-MWF is thus similar to that of
PMKF in Fig. 2, except that the y-axes for speech distortion
and residual noise variance are σ2

sd,SDW-MWF(n)/σ
2
X1

(n) and
σ2
Vo,SDW-MWF

(n)/σ2
Vo,MVDR

(n), respectively, and the x-axis becomes

λ/λ̃SDW-MWF(n) where λ̃SDW-MWF(n) = σ2
X1

(n)/Vo,MVDR(n).
We now consider the effect of RTF error on PMKF and

SDW-MWF. From (40) it follows that, under the single-source
assumption, theRxx(n) in (36) can be rewritten asσ2

X1
(n)ddH ,

and the SDW-MWF can actually be factorized into an MVDR
beamformer and a single-channel post-filter. The post-filter gain
is gSDW-MWF(n) from (39). The explicit proof can be straightfor-
wardly derived from Chapter 3.2.2 of [65] and is omitted here.
Similarly, following Section V in [41], the proposed PMKF can
also be factorized and implemented as a concatenation of an
MVDR beamformer and a single-channel modulation-domain
Kalman-type filter, whose trade-off behaviour is controlled by
the parameter λ of PMKF. As a result, the RTF error mainly
affects the MVDR beamforming stages in both methods; this
has been analysed in [66].

3) Trade-Off Performance Comparison: The PMKF exploits
the temporal evolution of speech to perform LP. From the above
analysis, as long as the STFT-domain LP of PMKF provides a
better estimate of the clean speech than a zero-valued signal,
we have σ2

e(n|n− 1) < σ2
X1

(n), and the upper bound for the
variance of speech distortion is smaller than that of SDW-MWF.
Therefore, by incorporating the LP information, the PMKF has
the potential to achieve lower speech distortion than SDW-MWF.

To analyse further the performance difference between PMKF
and SDW-MWF, we compare the residual noise level in the
output signals of the PMKF and SDW-MWF when the speech
distortion is fixed at Kσ2

X1
(n) for some K.

We assume that σ2
e(n|n− 1) < σ2

X1
(n), and express

σ2
e(n|n− 1) as

σ2
e(n|n− 1) = ρσ2

X1
(n), (41)

where 0 < ρ < 1. Let Kσ2
X1

(n) denote the target speech distor-
tion variance for both PMKF and SDW-MWF. From (28), (29),
and (41), for the PMKF, we have[
1− ρσ2

X1
(n)

λPMKFσ2
Vo,MVDR

(n) + ρσ2
X1

(n)

]2

ρσ2
X1

(n) = Kσ2
X1

(n),

(42)

where λPMKF is the controlling parameter of PMKF when
σ2

sd,PMKF(n) = Kσ2
X1

(n), and is computed as

λPMKF =

√
Kρσ2

X1
(n)

(
√
ρ−√

K)σ2
Vo,MVDR

(n)
. (43)

Substituting (43) into (29) and (32), the variance of the residual
noise in PMKF can be finally expressed as

σ2
Vo,PMKF

(n) =
(
1−

√
K/ρ

)2

σ2
Vo,MVDR

(n). (44)

Similarly, for SDW-MWF, when σ2
sd,SDW-MWF(n) =

Kσ2
X1

(n), according to (38) and (39), the corresponding
controlling parameter becomes

λSDW-MWF =

√
Kσ2

X1
(n)

(1−√
K)σ2

Vo,MVDR
(n)

, (45)

and the variance of the residual noise in (40) is given by

σ2
Vo,SDW-MWF

(n) =
(
1−

√
K
)2

σ2
Vo,MVDR

(n). (46)

Since ρ < 1, from (44) and (46), we have

σ2
Vo,PMKF

(n) < σ2
Vo,SDW-MWF

(n), (47)

which means that, for any given level of speech distortion, the
PMKF can always yield lower residual noise than the SDW-
MWF.

VI. EXPERIMENTS

We compare the performance of the proposed PMKF with
the conventional MVDR beamformer and with the SDW-MWF
using a publicly available hearing aid (HA) head-related impulse
response (HRIR) database [67].

A. Experimental Setup

With the HRIR database, the eight-channel room impulse
responses (RIRs) and the real multichannel noises measured
in a cafeteria environment, are used to generate the noisy and
reverberant signals received by the microphone array. The eight
channels include one in-ear channel and three behind-the-ear
channels for each ear, whose geometry is shown in Fig. 1 of [67].
The multichannel noises include the diffuse ambient noise and
babble noise, which were recorded during the off-peak and peak
times in the same cafeteria environment. The listener is seated at
a rectangular table near one corner of the room, and is looking
directly at the target speaker seated opposite at a distance of
1.02m (position A in Fig. 5 of [68]).

We created 15 s speech source signals by concatenat-
ing randomly selected sentences from the IEEE sentences
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database [69], and then convolved them with the RIRs to yield
the multichannel clean reverberant speech signals. Multichannel
noises are added to the clean reverberant signals at certain
signal-to-noise ratios (SNRs), which will be elaborated in each
experiment, and the factor of scaling multichannel noise is cal-
culated by taking the first channel as reference. All experiments
are conducted at a sample rate of 8 kHz. In each trial of the
experiment, a new speech signal is randomly generated, and the
multichannel clean reverberant speech is added to a randomly
selected 15 s interval of the noise signal to obtain the noisy
observation.

For all algorithms, we choose the acoustic frame length for
the STFT as 16 ms with a 4 ms frame hop, and use a Ham-
ming window. Since the RTF information is utilized by both
the MVDR and PMKF, for a fair comparison, based on the
discussions in Section V-C2, we implement the SDW-MWF as
a concatenation of an MVDR and a Winer-type single-channel
post-filter whose filter gain is given by (39). Given the oracle
knowledge of the RIRs, the RTF vector is computed using
the first 16 ms of the RIRs, and the first channel is taken as
reference. The multichannel noise covariance matrix is esti-
mated using the method in [61]. For the PMKF, we set the
LP order P = 2, and use a modulation frame length of 32 ms
with a 16 ms frame hop to estimate the LP coefficients bp,k
and the excitation variance W (n) in (4). The pre-processing
MWF used in the PMKF is the same as the SDW-MWF with
λ = 1. With the above configurations, each modulation frame
consists of 32 ms/4 ms = 8 acoustic frames. In each frequency
bin, based on the pre-processing MWF output, Z1(n, k), the
LP coefficients are recalculated for each new modulation frame
given [Z1(n, k), Z1(n− 1, k), . . ., Z1(n− 7, k)]. These coeffi-
cients are kept constant for the 16 ms/4 ms = 4 acoustic frames
within each modulation frame hop.

B. Performance Measure

The perceptual evaluation of speech quality (PESQ) [70]
and the frequency-weighted segmental signal-to-noise ratio
(FwSegSNR) [71] metrics are used to evaluate the speech
enhancement performance of different algorithms. For each
metric, we compute the raw value for the reference noisy signal
(“[·]raw”) and the improvement (“Δ[·]”) for the output signal.
We average the results over 10 trials.

C. Results With Fixed Controlling Parameter

The controlling parameter λ used for PMKF and SDW-MWF
can either be fixed, or be adaptive for each TF bin, to allow the
speech enhancement performance to be more flexibly controlled.
In this subsection, we will evaluate the algorithms using a
fixed controlling parameter, and in the following subsection
we evaluate the effect on PMKF and SDW-MWF of adaptively
choosing the controlling parameter within each TF bin.

In the fixed controlling parameter case, as we mainly aim to
evaluate the effect of the controlling parameter, only two SNRs in
the ambient and babble noise conditions are considered, namely
−5 dB and 5 dB, and correspond to the highly and moderately

Fig. 3. Comparison results for different values of the controlling parameter λ

in ambient noise conditions.

Fig. 4. Comparison results for different values of the controlling parameter
λ in babble noise conditions. The PESQ and FwSegSNR of the raw signal are
1.078 and −3.51 dB respectively.

noisy environments respectively. The controlling parameter λ

changes from −20 dB to 20 dB, with a step size of 4 dB.
The comparison results for different controlling parameters

in ambient and babble noise conditions are shown in Fig. 3
and Fig. 4, respectively. It is shown that when λ is small,
both SDW-MWF and PMKF yield similar results to the MVDR
beamformer, indicating that in order to control speech distortion,
little further noise reduction is performed in SDW-MWF and
PMKF. Increasing λ leads to more noise reduction, and this
further increases the speech quality and segmental SNR of the
SDW-MWF and PMKF outputs.

We can observe that, for a certain range of λ which targets
a reasonable trade-off between noise reduction and speech dis-
tortion, the proposed PMKF consistently achieves the largest
improvement in both PESQ and FwSegSNR for all evaluated
noise types and SNRs. When λ is very high, the speech signal
is highly distorted, thus both SDW-MWF and PMKF yield
worse performances than the MVDR beamformer. However, the
results show that, compared with the raw noisy input signal,
the SDW-MWF and PMKF still give positive improvements in
PESQ and FwSegSNR even for λ = 20 dB.

It should be noted that both PESQ and FwSegSNR are affected
by the noise level. Here we consider one example in the 5 dB
ambient noise case to further illustrate the trade-off between
speech distortion and noise reduction of SDW-MWF and PMKF.
Based on the performance analysis in Section V, the speech
distortion variance and residual noise variance metrics of the
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Fig. 5. Illustration of the trade-off behaviour of SDW-MWF and PMKF for
one trial in the 5 dB ambient noise condition. The speech distortion variance
σ2

sd and the noise residual σ2
Vo

are normalized with respect to variance of the

clean signal σ2
X1

, and the pairwise values for different controlling parameters
are shown.

PMKF and the SDW-MWF, which are defined in (28), (32),
(38) and (40), are calculated in each TF bin. For each controlling
parameter, the global variances of speech distortion and residual
noise are measured by averaging the metrics over all TF bins
in the power domain, and are normalized by the variance of
the clean speech. We evaluate the controlling parameter λ from
−20 dB to 60 dB with a step size of 4 dB, and the pairwise values
of the speech distortion and residual noise measures are plotted
in Fig. 5. We can observe for both SDW-MWF and PMKF,
decreasing the speech distortion leads to more residual noise,
which are consistent with the theoretical analysis in Section V-A,
V-B and V-C2. It is shown that to under the same level of speech
distortion, the residual noise level of PMKF is smaller than the
SDW-MWF.

D. Results With Adaptive Controlling Parameter

In this subsection, we choose the controlling parameter, λ,
adaptively for each TF bin. According to the performance anal-
ysis in Section V, small controlling parameter values should be
used in speech-dominated TF bins to preserve speech, and large
values should be used in noise-dominated bins to suppress noise
aggressively. Therefore, the choice of controlling parameter
depends on the noise level, and thus can be determined based
on, for example, the speech presence probability, local SNR, or
a mask estimated by neural networks. Alternatively, under the
PMKF framework, it is possible to train an end-to-end neural
network to find the optimal controlling factor and optimize an
overall speech enhancement measure (e.g., MSE) directly.

This section evaluates the use of a TF mask to control the
value of λ. The mask is computed either as an ideal binary
mask (IBM) [72], or by using the method in [73], [74]. The
IBM is computed given oracle knowledge of the speech and
noise level in each TF bin. The method in [73], [74] uses the
MVDR beamformer output to obtain a ratio mask estimation.
The estimated ratio mask is either converted to a binary mask
by thresholding at 0.5 or else used directly to compute the
controlling parameter.

Fig. 6. Comparison results for different SNRs when using the IBM based con-
trolling parameter for SDW-MWF and PMKF. The performance improvements
(“Δ[·]”) and the raw values (“[·]raw”) of the reference noisy signal are shown
using bars and dashed lines, respectively.

Fig. 7. Comparison results for different SNRs when the controlling parameter
for SDW-MWF and PMKF is adaptively chosen according to a binary mask
estimated using [73], [74]. The performance improvements (“Δ[·]”) and the
raw values (“[·]raw”) of the reference noisy signal are shown using bars and
dashed lines, respectively.

Given the mask value for each TF binM(n, k), the controlling
parameter is adaptively chosen as

λ(n, k) = M(n, k) ∗ λmin + [1−M(n, k)] ∗ λmax, (48)

where the controlling parameter switches or interpolates be-
tween the lower bound λmin and the upper bound λmax. In
the following experiments, we set λmin = −10 dB and λmax =
10dB.

We consider the ambient noise and the babble noise cases in
the cafeteria environment, and the SNR changes from −5 dB
to 15 dB with a step size of 5 dB. In each TF bin, the same
controlling parameter is applied on the PMKF and SDW-MWF,
and the PESQ and FwSegSNR of the output signal are evaluated.

The comparison results for adaptively choosing the control-
ling parameter are shown in Fig. 6 to Fig. 8 using respectively
the oracle IBM and the ratio mask estimator from [73], [74].

When the IBM based controlling parameters are used, we
notice from Fig. 6 that, the proposed PMKF generally achieves
the largest improvements in both PESQ and FwSegSNR for all
SNRs in ambient noise. In babble noise, although the PMKF
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Fig. 8. Comparison results for different SNRs when the controlling parameter
for SDW-MWF and PMKF is adaptively chosen according to a ratio mask
estimated using [73], [74]. The performance improvements (“Δ[·]”) and the
raw values (“[·]raw”) of the reference noisy signal are shown using bars and
dashed lines, respectively.

yields similar improvements to SDW-MWF in FwSegSNR when
SNR ≤ 10 dB, it still has larger improvements in PESQ than
SDW-MWF and MVDR, which indicates that the PMKF outputs
have less speech distortion than the SDW-MWF outputs when
achieving the similar reduction in noise. It can be also seen that
the advantage of PMKF becomes greater as the SNR increases,
this is because the preprocessing MWF gives a more accurate
estimation of the LP coefficients, and the LP information ex-
ploited by the PMKF is more reliable. When SNR = 15 dB,
the proposed PMKF gives nearly 0.4 additional improvement
in PESQ compared with the SDW-MWF and MVDR outputs.
Moreover, since the difference between the noisy and clean
signals becomes smaller in high SNR conditions, all methods
generally yield decreased improvements over the noisy reference
signal as the SNR increases.

The results of using the ratio mask estimator from [73],
[74] to determine the controlling parameters without any ora-
cle knowledge are shown in Fig. 7 and Fig. 8. In Fig. 7, the
estimated mask is converted to be binary before computing
the controlling parameters using (48). Again, we can observe that
the proposed PMKF outperforms the SDW-MWF and MVDR
for almost all cases in ambient noise. At high SNRs the SDW-
MWF fails to improve the PESQ compared with the MVDR, this
is possibly because when the estimated mask is not as accurate
as the oracle one, the Wiener-like post-filter introduces speech
distortion to the relatively clean signal. However, the proposed
PMKF can improve both PESQ and FwSegSNR, which indicates
that suppressing noise and preserving speech are simultaneously
achieved. Similar conclusions can be drawn from Fig. 8 where
the ratio mask is directly used in (48) to determine the controlling
parameters. According to (48) a smaller controlling parameter is
chosen in low SNR TF bins compared with the binary mask case,
which makes the noise reduction less aggressive. Therefore,
it can be seen that in low SNR conditions, the SDW-MWF
and PMKF generally yield a higher PESQ improvement, which
indicates that more speech is preserved. It comes at the cost
of lower FwSegSNR improvement, meaning that less noise is
suppressed.

TABLE I
NORMALIZED EXECUTION TIME OF DIFFERENT ALGORITHMS

E. Computational Complexity Comparison

We finally show the comparison results of computational
complexity. We run each algorithm for 50 trials and compare the
average execution time of each algorithm. The execution time for
modules such as noise covariance matrix estimation and mask
estimation is excluded. The result is shown in Table I, which
is normalized with respect to that of the MVDR. It can be seen
that compared with the MVDR, the computational complexity is
increased by 52% by SDW-MWF, and is additionally increased
by 36% by the proposed PMKF.

VII. CONCLUSION

A modulation-domain PMKF is proposed by extending the
previously proposed MKF and using a parameter to control the
trade-off between speech distortion and noise reduction. A new
cost function is derived based on the decomposition of the MKF
cost function, and the optimal PMKF gain is obtained under the
MMSE criterion. We have conducted a performance analysis
on the PMKF and the SDW-MWF, and demonstrated that the
PMKF can be viewed as integrating the LP information into
the SDW-MWF, and the PMKF can always yield lower residual
noise than the SDW-MWF with the same amount of speech dis-
tortion. Different speech enhancement systems based on various
strategies of choosing the controlling parameters are developed
in the experiments, and by using a public HRIR database, we
demonstrate the effectiveness of the proposed method.
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